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ERIC Editor'e Foreword

As one can judge from its size, this book has taken a long time
to develop. It represents years of effort in terms of conducting re-
search, analyzing and interpreting research results, and pondering
about the research on problem solving. The effort was approached in
a logical, systematic, and cooperative fashion. The foreword and the
preface each provide comments that outline the book, so those will
not be repeated here. Your attention is called simply to the fact
that this is a massive step forward in presenting, in one book, the
thoughts of some researchers intensively working with problem-solving
ideas. The results of their research attempt to bring more clarity
to the situation from a variety of points of view. By no means for-
gotten is the classroom teacher: not only was the research conducted
in an effort to help the teacher cope better with the teaching of
problem solving, but also some chapters contain specific suggestions
for teachers and others contain lesson plans that teachers might try
out in their own classrooms.

ERIC/SMEAC is pleased to make this book available to researchers
and to teachers.

Marilyn N. Suydam
Editor, ERIC/SMEAC
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Editors' Proface

This book is intended for mathematics educators, psychologists,
and others interested in mathematical problem solving as researchers,
practitioners, or students. It could serve as a text for a graduate
course, or as a source of supplementary readings and references.

Chapter I is introductory, and should be read by all who are
interested in the subject of task variables. Chapters II-V describe
in more detail the categories of task variables, and the various theo-
retical perspectives taken by the authors. Chapters VI-VIII consist of
research studies, while Chapters IX-X contain teaching applications,
these two groups of chapters may be read independently of each other.
Finally, two invited reaztion papers provide comment and criticism.

The ideas in the book are the products of several different lines
of research, which eventually came to be unified within the task vari-
ables framework. The work on factors affecting problem difficulty,
including the "linear regression" model, was begun in the 1960's by
P. Suppes, M. Jerman, and others at Stanford University. It was car-
ried further in the early 1970's at Pennsylvania State University by
Jerman, and by J.C. Barnett as a graduate student working with R. Hei-
mer. At the University of Pennsylvania the state-space and algorithmic
analysis of problem structure, as well as efforts to control various
task variables for experimental purposes, were advanced by J. Caldwell,
J. Gramick, G.F. Luger, and W.M. Waters (/ith acknowledgments to R.
McGee and C. Serotta); who, between 1971 and 1977, were graduate students
working with G.A. Goldin. Another independent development was the
description and analysis of heuristic behavior, enormously influenced
by J. Kilpatrick while at Columbia University, and carried forward by
his students, N. Branca, D. Goldberg, H. Kellogg, J.P. Smith, and others,
during the 1970's. At the same time interest in heuristic processes
evolved at the University of Georgia, with research by L.L. Hatfield and
by J.W. Wilson, carried further by E.L. Kantowski and others.

In May 1975, many ef these researchers came together with others
in Athens, Georgia, for a conference sponsored by the Problem Solving
Project of the Georgia Center for the Study of Learning and Teaching
Mathematics. At this conference several working groups were organized,
of which two remained particularly active--the Task Variables Group,
chaired by G. Kulm, and the Heuristics Group, chaired by Smith. Under
Hatfield's dedicated leadership director, the Problem Solving Project
continued to provide a framework for worthwhile collaboration. Out of
the Task Variables Group emerged two projectsthe National Collection
of Research Instruments for Mhthematical Problei'SoluIng (a "Problem Bank"
edited by Kulm at.Purdue University), and the present boot.- From the
Heuristics Group emerged the process-sequence coding system which-Ve-art_____
fortunate to be able to include in this volume.

Conceptually the book is somewhere between a monograph and a collection



of invited papers. The categories of task variables, and the model in .

Figure 1.1, were the product of considerable discussion and revision
by the authors of the first five chapters. Of course there remained
many differences of opinion among the contributors, so that the authors
of the chapters take ultimate responsibility for the viewpoints expressed.
As editors, we endeavored to impose a reasonably consistent use of
terminology throughout the book, and to encourage at least a modest
degree of fidelity to the framework described in Chapter I. We bear full
responsibility for the many editorial shortcomings which the reader will
find--particularly in view of the difficulties faced 5y all of the authors
who, in writing their chapters conpurently, had access only to pre-
liminary drafts of other chapters.

Acknowledgments are due to the many individuals.and institutions who
made publication poss,..ole. The Georgia Center, in addition to its support
for the Problem Solving Project, arranged for the independent critique of
preliminary versions of all of the chapters. We would like to thank the
following outside readers for their helpful suggestions: S.I. Brown (State
University of New York at Buffalo), P.G. O'Daffer (Illinois State Univer-
sity), J. Payne (University of Michigan), J. Sherrill (University of Bri-
tish Columbia), and P. Trafton (National College of Education, Chicago).
Special thanks are due to I. Isaacs (University of the West Indies, Jamaica)
who, while at the University of Georgia, read the entire manuscript. Valu-
able assistance with the index and bibliography was contributed by C.J.
Feltz, C.S. Goldin, and F. McClintock. In addition we appreciate the sup-
port and assistance provided by our own University departments.

Finally, we gratefully acknowledge the support of the ERIC center,
which provided the means for publication, and especially the patient and
tireless work of M.N. Suydam, who supervised the difficult technical
aspects of preparing the manuscript fOr printing.

Gerald A. Goldin
De Kalb, Illinois

C. Ellin McClintock
Miami:, Florida

November 1979
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ForeWord

r?

The Study of Problem-Solving Processes in Mathematical Education

by

Larry L. Hatfield
University of Georgia

Athens, Georgia

Goals of mathematical education usually assert the paramount value
of learning to solve problems. It is a complex challenge to guide stu-
dents to become competent problem solvers in mathematics. Indeed, there
are numerous varied factors which may influence the learner's progress
and the teacher's efforts (Hatfield, 1978).

In an effort to further our understanding of such factors, this
volume on task variables has been prepared. The focus upon the quali-
ties and influences'of mathematical problem-solving tasks has been
adopted intentionally. The authors live apparently used the heuristi-
cal precept: simplify the problsm. (of' develogAmg_a theory of milOte-
matical problem solving) by momentarily ignoring some of the conditions,
variables, or questions. As overviewed by Kulm in Chapter I, this
book seeks to provide information about the study of problem solving by
clarifying the "instrument" (i.e., the task) used to stimulate and
measure the phenomenon of problem solving.

This concentration upon the task at least temporarily ignores much
of the other Sources of variation due to the solvers or the solving
situation. Critics may issue challenges-to the viability of this tactic.
But it is with considerable patience and detail that the authors of
Chapters I-V have pursued their efforts to specify and clarify their
scheme of task variables in mathematical problem solving. The potential
uses of these conceptualizations are discussed as suggested applications
of task variables to research (Chapters VI-VIII) and to teaching (Chapters
IX-X). Finally, reaction papers by Jerman and Kilpatrick are included to
commend and critique the ideas from the perspectives of two mathematics
educators whose own earlier efforts influenced the authors, but who were
not directly involved in the formulation of this book.

The treatment of task variables developied herein does not exhaust,
the possible sources of variation which might be attributed to problem-
atic tasks in mathematics. The goal has been to identify potentially
significant sources of task variation and to explicate their definitions,
meanings, and effects as thormighly as current understandings of human
problem solving might allow. Any such effort must constitute a "means
to an end": the long-range goal is.to utilize these task variables in
studies of problem-solving processes in mathematical education. Thus,
the material herein is based upon an assumption that more precise, elab-
orate understandings of the influences of problematic task variations



xii

will further the search for better understandings of how students learn
to solve mathematics problems.

. It will be clear to the reader that the authors have produced a
notable contribution toward these research and instructional goals. Yet,
to the members of the Task Variables working group of tlie Georgia Center
for the.Study of Learning and Teaching Mathematics who initiated this
book, it represents a challenge for continued work. The task variables
developed to date need to be studied and possibly refined in terms of
their meanings, measurements, and uses in teaching and learning how to
solve mathematical problems. Comparable formulations of subject and
situational variables need to be explicated. Eventually, the canplex in-
teractions of these variables must be studied.

Matiiematics teachers need to understand how students might construct
solutions to problematic tasks. But, perhaps more important, we need to
understand how students construct their own increasing competence to
solve problems across mathematical learning experiences. These construc-
tions-range from learning details of a specific solution to assimilating
heuristical schemata used in several solutions to generalizing compre-
hensive meta-heuristical strategies across entire classes of problems
and solutions. That is, the variety of,constructions for, and about,
solving mathematics problems which students will construct to become
competent is extensive and complex. Yet it must be a, central focus,in
studying processes to examine these constructions dr- to the extent pos-
sible, as they are being constructed. Detailed case studies which
identify and document a solver's existing competence structures for
solving tasks are needed. But teachers are 'necessarily concerned with
change, and they need knowledge of how such competencies might be built
and reconstructed across time and tasks.

This ceinstructive approach views mathematics as a human construc-
tion, learners as active builders of their own conceptions and Compe-
tencies, and mathematics instruction as the context for stimulating
and guiding these builders in their own constrictive processes. Of
course, mathematics can be viewed as a body o information and mathe-
matical learning as information-virocessing. e should all be deeply
aware of the-growing influencesofthe info ion-processing frame-
work in the study of human cognition. But ewell and Simon (1972)
urge that we recognize the necessity to vi6w the human processor as
an adaptive system, possessing a capacity to develop and change the
system while the performing system remains in reasonably good, working
order. Indeed, the crucial aspects of learning include changes in
the processori. Thus, a learner is not a rigid, pre-wired machive
with memory capacities, but rather a dynamic adaptable system where"
programs or routines are self-constructed and subsequently modified
or reconstructed. Furthermore, the informational content of most
learning experiences includes not only the surface, factual materlal
but the meta-information relating to the means (processes) for dealing
with the material. Among these conceptions of "how I learn" is an
awareness of one's own processes of learning; in the problem-solving
domain these make up heuristical emphases.

1 4



Problem solving as an endeavor requires the coordination of re-
flection and activity. The investigation of solutions as they are
being constructed would involve attention to the solver's actions (both
external and internal) and the interactive thoughts about these actions.
An important antecedent to such actions and, reflections is the struc-
ture of goals, both general and task/situation specific, held by the
solver. To understand the genesis and control of a solver's actions
and reflections, the teacher/researcher would know much about these
goals. To date, little appears to be known, though much is often as-
sumed about the solver, regarding theidiosyncratic goal structure. In
devising ways of knowing a solver's goals, it will be important to re-
cognize that goals, too,are constructed and often transitory. Indeed,
an important purpose and outcome of instruction can be to bring about
changes in the goals held by the student.

Today, the psychology of learning and teaching mathematics seems
to be influenced by at least two rather differing viewpoints. A
rationalist, scientific approach considers the educative situation
as a cybernetic system involving adaptable but predictable beings,
whose actions are describable from the point of view of general control
theory. Instruction becomes an application of rules or algorithms for
stimulating the information-processing capabilities of the student.
Understanding problem-solving processes becomes a search for the pro-
duction systems, invariant across solvers, responsible for controlling
solving behavior (e.g., Landa, 1976b). p *

A constructivist approach views the- educative situation as a com-
plexity of perceptions, goals, dispositions, and interactions, all
constructed by individual participants. These-constructions are fluid
and dynamic, being often in flux. The Changes are often predictable
only within broad terms. But to understand problem-solving processes
is to search for the varied bases,for, and qualities of, the construc-
tions and reconstructions that constitute thinking. Any "theory" of
problem solving woUld include attention to the rather uncontrollable
variations in the possible constructions due to idiosyncratic goals
and competencies.

.

It should be obvious that mathematical education cannot be fairly
dichotomized this way. Yet perhaps elements of these two extremestdo
guide our thinking as teachers and researchers. The study of problem-
solving processes in mathematical education can easily tolerate either
framework,.since we sorely need information to be generated for the
teaching and learning of problem solving.

The analysis of task variables in the Present book is a small but
important step towards a theory of how students learn mathematical
problem solving.
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The Classification of ProblemSolving Research Variables

by

Gerald Kulm
Purdue University

West Lafayette, Indiana

The development of problem-solving ability is a cumulative,pro-
cess which depends on the history of problem-solving experiences of
the student. Crucial to any problem-solving experience is the task
itself. In order to advance knowledge about problem solving, it is
thus important that close attention be given to the Characteristics
of problem tasks.

The task or collection of tasks, is the measuring instrument
which is used to study the phenomena of problem solving. An under-
standing of how the variables describing the task itself interact
with the total situation is a basic requiremehr-for such a stUdy.
The ability to classify and define task variables would make it
possible to control them systematically, in order to determine their
effects on problem-solving behavior. Furthermore, the precise spec-
ification of problem tasks is necessary for the replication and
extension of experimental studies. One purpose of-this book is to
provide researchers with categories and definitions of variables
describing problem tasks, providing a framework for their control
in problem-solving studies.

Throughout this book, the term "task variable"' will mean any
characteristic of problem tasks which assumes a particular value
from a set of possible values. A task variable may thus be numeri-
cal (e.g., the number of words in a problem) or classificatory
(e.g., problem content._area).

In the past, standardized tests have been widely used to
measure problem-solving ability. However, the emphasis in problem-
solving research is shifting to the study of the pivcesses used to
arrive at an answer. The complexity of the written, verbal, or
enactive sequences of behavior that Characterize these processes
makes it particularly necessary to examine the measuring instrument
(i.e., the problem task) which elicits them. A Zanguace is needed
tu describe task variables, based on a model for the range of possi-
ble,characteristics of mathematical problems. Sulch a development

can assist the standardization of vocabulary, helping to distinguish
between problem-solving variables which are intrinsic to the problem
itself and those which describe other aspects of the problem-solving
event.

-1-
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The conclusions-of problem-solving studies are sometimes stmited

in terms of processes which certain experimental groups are (or are
not) capable of employing. On the other hand, small changes in the
problem content, its setting, or the wording of the problem may
result in major changes in the problem-solving procedures exhibited
by subjects. Often these problem characteristics are not sufficiently
described or analyzed, making it difficult to interpret or reproduce
the findings. The payoff from a thorough description of task varia-
bles, and an investigation of their relationship to experimental
observations, should be increased,replicability and generalizability
of research results.

The study of task variables also has important implications for
classroom instruction. For example, the systematic teaching of a
particular problem-solving strategy may require sets of problems of
varying complexity to which the strategy is applicable. Problem
complexity variables which are not relevant for a particular instruc-
tional segment must be controlled, while the relevant variables are
emphasized. As teachers observe the capabilities of individual stu-
dents and their difficulties with different types of problems, it can
be helpful to recognize which characteristics of the problems pose
particular difficulties, and to tailor discussion towards the expli-
cit emphasis of these problem characteristics. Although these may
seem to be simpre'ideas, the variableb Sffedting problem difficulty '.

are not simply described or easily characterized.

In this chapter, we shall develop the necessary background and
introduce the Taodel for the classificat4on of task variables which
underlies the structure of this book. Oefinitions for each of the
major categories of task variables will'be presented and discussed.

1. Background for the Stu4y of Task Variables

Kilpatrick's Categories of Problem-Solving Research Variables

In a position paper outlining categories of variables and
methodologies in problem-solving studies, Kilpatrick (1975) attempted
to clarify the role of task variables and to suggest pdssible methods
of systematic problem description. This paper served as a forerunner
to the development of the model Adscribed here. An outline of
Kilpatrick's categories is presented in Table 1.1.

Independent Variables

Kilpatrick specified three main categories of independent varia-
bles in problem-solving researchsubject variables, task variables,
and situation variables. These three categories are derived from the
necessary components of a problem-solving event, wtich are a problem
solver (subject) solving a ptcblem (task) under a set of conditions
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Table 1.1 Kilpatrick's Cdtegories of Problem-Solving Research Variables
(Kilpatrick, 1975)

Independent Variables

Subject Variables

Organismic Variables
Trait Variables
Instructional History Variables

Tdsk Variables

Context Variables
Structure Variables
Format Variables

Situation Variables

Physical Setting
Psychological Setting

Dependent Variables

Product Variables

Process Variables

Evaluation Variables

Concomitant Variables



(situation). Any problem-solving event involves a complex interaction
among the variables describing these three components. In Ander to
place the category of task variables in perspective, we shall outline
briefly the nature of all three categories according to Kilpatrick.

Subject Variables

Subject variables are those quantities which describe or measure
specific attributes of the subject--in this case the problem solver.
They are of great importance in experiments of a clinical nature,
including "teaching experiments"-such as are frequently reported in
the Soviet Union. The small number of subject.s in suCh studies makes
a sensitivity to subject variables particularly important in conduct-
ing them and in reporting the results.

Kilpatrick further classified subject variables according to the
ease with which they can be modified. Those subject variables not
open to change or experimental manipulation were called organismic
variables. Examples of organismic variables are age, sex, socio-
economic status, and geographic residence. Kilpatrick noted that,
except for age and sex, few problem-solving studies have considered
organismic variables other than to describe the sample.

Of more interest are trait variables--those which can be mmdi-
fied by processes such as teaching. Traits such as cognitive style,
attitude, persistence, mathematical memory, or the ability to
estimate offer promise of being closely associated with problem-
solvingperformance. Kilpatrick suggested that it.might be fruitful
to concentrate investigation on specific rather than general traits
--for example, a study of the ability to estimate the magnitude of
numerical solutions to equations might yield clearer information
than studying the general ability to estimate. Many of the abili-
ties listed in Krutetskii's (1976) outline of the structure of
mathematical abilit.Les (see Table 1.3) are traits in Kilpatrick's
sense.

Finally, instructional history variables describe the schools
attended, mathematical topics studied, or problem-solving instruc-
tion received by the subject. Some of these are more/open to
manipulation than others. Kilpatrick points out thai the failure
to consider them in selecting experimental groups may be partly
responsible for the lack of differences often found between
instructional methods.

Task Variables

The category of task variables,as first introduced by Kilpatrick
included three classificationscontext variables, structure varia-
bles, and format variables. Although this classification scheme has
been extensively redefined and elaborated in this book, it is of
ineerest to summarite its initial conceptualization.
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Context variables include those which characterize the physical
situation of the problem, as well as the language in which the prob-

lem is expressed. They are intended to describe the differences
between problems having the same mathematical structure. Kilpatrick
noted that the term "content variable" may be appropriate, but
suggested that there may be different interpretations of 'what is
meant-by 'Enathematical content." Whichever term is used, Kilpatrick
intended "context variables" to include variables describing the
semantic content or mathematical meaning of the problem.

Structure variables are intended to describe the intrinsic
mathematical structure of a problem. One way to do so is to employ
a mathematical formula or relation. Kilpatrick suggested that two
problems with the same formula could be said to h-ave the same "syn-
tactic structure," evidently using this term to refer to the syntax
of the formula or relation, i.e., the variables, the operations, etc.
Another approach to the characterization-of-problem structtre whieh
Kilpatrick mentions is the "state-space" approach, described in
Chapter IV of this book. The concept of problem structure is
believed to be extremely important because of its implications for
studying the effects of problem similarities and differences on
problem-solving perforance.

Format variables describe the different manners or settir.gs in
which a problem may be presented. For example, it may be presented
along with other problems, with hints, or with the aid of some
apparatus. Usually, format variables have been ignored by
researcherp with the assumpfion that problem-,solving processes are
not affected by them. Particularly relevant to this assumption are
such format variables as the encouragement of scratch work, or
whether or not the subject is asked to think aloud during problem
solving. In Kilpatrick's opinion, format variables are important
because they represent dimensions across which problem-solving
results need to be generalized.

Situation Variables

In very general terms, situation variables describe the physi-
cal, psychological, or social environment in, which the problem-
solving event takes place. The category of situation variables
is difficult to charaCterize since it includes a variety of com-
ponents. ,In particular, some situation variables appear to over-
lap or merge with certain task variables, particularly those which
Kilpatrick calls format variables, and it is importent to resolve
this difficulty.

The physical setting includes such variables as the type of
space (classroom, laboratory, outdoors, etc.), the/nature of the
,space (comfortable, stimulating, familiar, etc.)y'and the avail-
able resources (calculators, measuring instruments, manipulative
materials, or amount of time). The psychological setting includes
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variables describing the purpose of the event (testing, instruction,
practice, etc.), the type of procedure (evaluative, prescriptive,
diagnostic, etc.), and the nature of the learning environment (type
or amount of feedback, quantity br quality of interaction). These
variables are most directly related to the motivation of the subject
in solving the problem, and the resulting affective outcomes. The
social setting, although not explicitly discussed by Kilpatrick,
seems to fit as well into this category, including variables des-
cribing the group (size, purpose, type, etc.) or the relationship'
between subject and experimenter (personality, familiarity, etc.).

Situation variables are intended.not to describe the task or
the subject, but to be external to both. In this book, some of the
Upove-mentioned variable's, particularly the availability of
resources such as calculators, are considered to be task variables
and are discussed as such. AB Kilpatrick pointed out, situation
variables- are-ofteh nuisance variables--s4 little-direct-interest,
but possibly having unexpected effects on problem-solving perfor-
mance.

Dependent Vqriables

The second major category of problem-solving research variables
is derived from subjects' responses to the problem task. Kilpatrick
identified four classifications of dependent variables: product
variables, process variables, evaluation variables, and concomitant
variables.

Product Variables

Product variables have to do with achievemen of the solution
to a problem. This classification includes the tine to solution,
the correctness or incorrectness of a solution, 41 the complete-
ness of a solution. 'Perhaps the most important comment made about
these variables is the recommendation that researchers consider
product variables beyond those of speed and accuracy--ine1Rding,
for example, the elegance of the solution or the multiplicity of
different solutions found.

Process Variables

Process variables are derived from a subject's verbal report
during problem solving, from his or her written work, or from steps
taken with a physical apparatus. Examples include variables des-
cribing the heuristic processes used, the algorithms employed, or
the blind alleys encountered along the subject's path towards a
solution. Kilpatrick was adamant about the importance of process
variables, stating that "any respectable study of problem solving
in mathematics should inchale measures of process variables."
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While this is certainly a worthwhil goal, some caution is necessary,
especially if subject self-reports are the sole process measure.
Nisbett and Wilson (1977), for example, have argued convincingly that
self-reports during problem solving may be inaccurate or incomplete,
and that exclusive reliance on "thinking aloud" reports for obtaining
process variables may result in distortion of the problem-solving
process.

Evaluation Variables

Evaluation variables describe the views, thoughts, and opinions
expressed by the subject after the problem has been solved. These
variables include what tha subject was trying to do, how the problem
was perceived in relation to other problems, the subject's level of
confidence in the solution, etc. While it may be difficult to
obtain accurate measures of variables in this classifications
Kilpatrick emphasized that they describe information which can be
obtained only from the subject, and should not be neglected.

Concomitant Variables

ConcoLtant variables.lre'those variables not included in the
previous three categories, which may nevertheless change during the
course of problem solving. Many of the ttait variables mentioned
above could be considered concomitant variables--for example, a
subject's ability to estimate numerical solutions might improve
after solving a set of problems. 'Similarly, more general abilities,
or attitudes, might change. As Kilpatrick noted, concomitant var-
iables cannot be expected to change greatly unless they are very
specific or the number of problems solved is large.

Having placed the category of task variables in the context of
Kilpatrick's framework of problem-solving researdh variabled, let
us digress to survey a few autbors of importance to mathematics
education who have placed special emphasis on the characteristics
of problem tasks.

Problem-Solving Methods and Mathematical Abilities

Many of us have been fascinated and challenged, at one time or
another, with the books by problemists such as Sam Loyd and Martin
Gardner (1959a, b; 1966). These authors were concerned with creat-
ing, collecting, discussing, and solving a.wide variety of problems,
not with the experimental study of problem solving or with its
teaching. Nevertheless, their work has great importance for these
areas. They (and o hers) recognized and developed the concepts of
the structure of a p oblem and the relationships between mathemati-
cally similar problems, which importantly affect problem-solving
processes. Ideas suCh as problem symmetry, problem isomorphisms,
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and classification of problems in accordance with their solution
strategies have been used extensively by Gardner. These ideas con-
tribute importantly to the discussion of structure and heuristic
behavior variables in the present book.

'George Polya (1945, 1954, 1962, 1965) has been a major contin-
uing influence on the teaching of problem-solving skills. His work
has focused principally on the use of well-selected problem tasks
to foster effective problem solving and on the application of
general heuristic processes to problem solving. Table 1.2 presents
Polya's summary of the stages involved in effective-problem solving:
(1) understanding the problem, (2) devising a plan, (3) carrying out
the plan, and (4) looking back. In the present book, each category
of task variable is envisioned as influencing some of nese stages
more strongly than others.

The heuristic processes sugiested by Polya have motivated many
experimental investigations. Perhaps the most intriguing of these
processes, in relation to the study of task variables, is the advice
to find a "related problem." It seems clear that the term "related"
refers to some sort of underlying structural relatedness; but it is
difficult in many cases to describe the precise nature of the rela-
tedness in terms of problem stru2gure.. olya mentions three ways.
in which problems may be related--by analogy, by specialization,
and by generalization. Related problems can also be obtained by
decomposing and recombining problems. In general, one wishes to
identify the task variables that contribute to the relatedness.
For example, Polya uses the following to illustrate analogowsproblems:

1.1 Given the length of an edge of a regular tetra-
hedron, find the radius of the sphere circwwscribed
about the tetrahedron.

1.2 Given the length of the side of an equilateral
triangle, find the radius of the circle circum-
scribed about the triangle.

Polya was not explicitly concerned with syntax, but it is striking
that two problems have the same number of words and the same sen-
tence structure. They are also drawn from the same mathematical
content area. In these senses they are "related" on a surface
level. It becomes more difficult to describe their structural
relationships. Problem 1.2 is the planar analogue of Problem 1.1,
so that analogous formulas which characterize structure exist.
Problem 1.1 can be solved by use bf a solid geometry analogue to
the concurrenci of the angle bisectors of a triangle, so that it
possesses a solution strategy related to that of Problem 1.2.

According to Polya, the difficulty with using related prob-
lems is not that of finding problems which seem relevant to the

23
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problem at hand, but that of finding problems related in such a way
so as to help lead to a solution. The precise nature of such rela-
tedness is a question which recurs in this book and which, in thii
author's opinion, can be answered through task variable analysis.

Like Polya, Wickelgren (1974) suggests methods for helping to
improve problem-solving abilities. In an attempt to place problem-
solving methods on a theoretical basis, Wickelgren borrowed many
concepts from artificial intelligence. He considered the.structure
of the problem task to be extremely important. According to
Wickelgren, a problem consists of information concerning (1) givens,
(2) operations, and (3) goals. Problem types can be characterized
by the amount and kind of information available in each of the three
categories. For example, in a problem to find x (the goal), given
the expression 7x + 3 24 (the given), the goal is incompletely
specified. The problem, therefore, can be classified as one in
which the goal to be reached is not given. Other types of problems
have completely specified goals. A "problem to prove" would be one
in which the goal is given; e.g., given the expression 7x + 3 24,
prove that x 3. Other problem classifications arise by varying
the specification of the givens and the operations.

Wickelgren also discussed in his theory the ideas of problem
states, operations on states, and soli:amis. The representation of
possible sequences of actions and possible sequences of states is
called a state-action tree. The state-action tree provides the
framework for much of Wickelgren's discussion oi problem-solving
methods. Problems are characterized according to the properties
of their state-action trees; and although not all problems are
represented by such trees, concepts derived from them, such as the
size of the search space and the identification of subgoal states,
are used extensively in discussing solution methods.

Wickelgren also discussed the idea of related problems, focus-
ing more directly on the relationships between solution methods than
did Polya. Five types of related problems were identified:
unrelated problems, equivalent problems, similar problems, special
cases, and generalizations. The last three are very similar to the
categories discussed by Polya. Wickelgren's analysis of related
problems was based on the difficulty of solution of each. Both
Wickelgren and Polya used the idea of problem structure to charac-
terize the appropriate heuristic processes and solution strategiis.

Unlike the aforementioned authors, Krutetakii (1976) was mainly
interested in the experimental study of problem-solving ability.
The development of problem tasks was an important component of his
work. In an attempt to span the complete range of components of
problem-solving abilities, 26 problem series containing a total of
79 problems were used. Rather than relying on answer-oriented
instiuments, Krutetskii emphasized the importance of relatively
short tests which were designed to measure specific abilities. The
problems were classified according to mathematical content area, as



Table 1.2 Polya's Model for gff4tive Fftblam Saving (Polya, 1945)

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM

First. What is the unknovn? What are the data? What is

the condition?

You have to Is it possible to satisfy the condition? Is the

understand condition sufficient to determine the unknown? Or

the problem. is it insufficient? Or redundant? Or contradictory?

Draw a figure. Introduce suitable notation.

Separate the various parts of the conditioL. Can
you write them down?

DEVISING A PLAN

Second. Have you seen it before? Or have you seen the same
problem in a slightly different form?

Find the connec-
tion between the
data and the un-
known. You may be
obliged to consi-

der auxiliary
problems if an

immediate connec-
tion cannot be

found. You should
obtain eventually

a plan of the
solution.

Do you know a reZated problem? .Do you know a theorem
that could be useful?

Look at the unknown: And try to think of a familiar
problem having the same or a similar unknown.

Here is a problem related to yours and solved before.
Could you use it? Could you use its result? Could
you use its method? Should you introduce some
auxiliary element in order to make its use possible?

Could you restate.the problem? Could you restate it
still differently? Go back to definitions.

If you cannot solve the proposed problem try to solve
first some related problem. Could you imagine a more
accessible related problem? A more general problem?
A moie special problem? An aaalogous problem? Could
you solve a part of the problem? Keep only a part of
the condition, drop the other part; how far is the
unknown then determined, how can it vary? Could you
derive something useful from the data? Could you

(continued)



Table 1.2 (continued)

think of other data appropriate to determine the
unknown? Could you dhange the unknown or the data,
or both if necessary, so that the new unknown and
the new data are nearer to each other?

Did you use all the data? Did you use the whole
condition? Have you taken into account all essential
notions involved in the problem?

CARRYING OUT THE PLAN

Third. Carrying out your plan of the solution, check each
step. Can you see clearly that the step is correct?

CarTy out your plan. Can you prove that it is correct?

LOOKING RACK

Fourth. Can you ch,-ck the result? Can you check the argument?

Examine the '7an you derive the result differently? Can you see
solution obtained, it at a glance?

Can you use the result, or the method, for some other
problem?
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well as according to the ability characteristic they were designed to
elicit. Each series of problems was designed to reveal certain
aspects of a particular component of ability, so that it was neces-.
sary to compare results on several problem series. Krutetskii aid:

not specifically analyze the task variables in describing his prob-

lems or the procesJes they measured. Nevertheless, it is quite
clear that control and manipulation of task variables were central
to the development of the series. The description, of students'
strategies and successes with the various tests were made with
reference primarily to the ability characteristic represented by
the test. Table 1.3 summarizes Krutetskii's outline of the struc-
ture of mathematical abilities, as it evolved from student perfor-
mance on his problem series.

A great deal of information about the effects of task variables
on problem-solving behavior can be obtained directly from Krutetskirs
discussions. In one set of problems with identical context, a slight
change in the syntax of a problem produced a great change in struc-
ture. The following two problems illustrate this type of change:

1.3 A horse moved at a speed of 12 km per hour for
half the time spent on a journey, and at 4 km
per hour for the rest of the time. Find the
horse's average speed.

1.4 A horse traveled hal,f a journey at a speed of 22
kw per hour, and at 4 km per hourfor the rest
of the journey. Find the horse's average speed.

The seemingly unimportant changes produce drastic dhanges in the
problem and the operations used to solve It. Many students had
difficulty in coping with the change, even When they knew that the
second problem was very different because of the seemingly small
change.

The problems constructed by Kritetskii, and the far-reaching
results that he obtained, provide an example of the value of well-
conceived and carefully-sequenced problem instruments.

Krutetskii's investigations are not rigorous empirical
studies, but are semi-clinical in nature. Some of the most
valuable data an task variables are provided by the work of
Suppes et al. (1966) and Jerman (1971). These and other studies
were aimed at investigating the problem characteristics affecting
difficulty through the use of linear regression models. Both syn-
tax and structure variables are included in these studies. A
thorough summary of the linear regression analyses is provided
in Chapter II, while additional discussion of the work of
Krutetskii, Polya, and Wickelgren occurs in Chapters III through
V of this book.
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Table 1.3 Krutetskii's Genera Outline of the.Structure ofMathematical
Abilities (Krutetskii, 1976)

L. Obtaining mathematical information

A. The atility for formalized perception of mathematical
.material, for grasping the structure of a problem.

2. Processing mathematical information

A. The ability for, logical thought in the sphere of quanti-
tative and spatial relatiOnships, nuMber and letter symbols;
the ability to think in mathematical sydbols.

B. The abilitY for rapid and broad generalization of mathe-
matical objects, relations, and operations.

C. The ability to curtail the process of mathematical
reasoning and the system of corresponding operations;
the ability to think in curtailed structures.

D. Flexibility of mental processes in mathematical activity.

E. Striving for clarity, simplicity, economy, and rationality
of solutions.

F. The ability for rapid and free reconstructin of the
direction of a mental process, switching from a direct
to a reverse train of thought (reversibility of the
mental process in mathematical reasoning).

3. Retaining mathematical information

A. Mathematical memory (generalized memory for mathematical
relationships, type characteristics, schemes ofarguments
and proofs, methods of problem-solving, And principles of
approach).

4. General synthetic component

A. Mathematical cast of mind.

048
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Figure 1.1. A Hierarchy of Task Variables, Methods of Task Analysis, and Problem-Solving Stages
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2. Categories of Tisk Variables

The following discussion outlines four major categories of task
. variables around which the present4book is orianized. Each
category will be more completely deicrilqed in.the four chapters which
follow, providing additional detail for the' general model described
here. The categories are: (a) 'variables whickdescribe the problem
syntax, (b) variables which characterize the !problem's mathematical
cOttent and non-mathematical context, (c) variiables Which describe
the structure of the problem, and (d) variables which characterize
the heuristic processes evoked by the probleni.

These categories of task variables are h othesized to stand in
a hierardhical relationship to each other, corresponding to increas-
ingly complex levels of processing by the problem Solver. The
hierarchy is represented in Figure 1.1.

The right column in the figure represents the stages.in effec-
tive problem solving according to Polya. These stages are envisioned
to have a general sequential nature although, as with all such models,
the problem.solver may frequently return to earlier stages in the
sequence. As indicated in the diagram by solid arrows, each category
-of task variables is hypothesized to have primary importance for one
or two of these stages, and secondary importance for others indicated
by broken arrows. For example, syntax variables, would primarily
influence the subject's initial understanding of the problem, and
have little influence over the later carrying out of a plan of a
solution.

The left column in the figure' represents ways in Which a teacher
or researcher might analyze the complexity of a problem task. A
surface analysis may yield information about the problem syntax--
the variables being for the most part explicit and susceptible to
direct observation or counting with a minimum of processing. A
semantic analysis also obtains information directly from the prob-
lem statement or embodiment; however, the analysis requires knowledge
of mathematical content and involves interpretation of the meanings
of the terms in the problem statement. Solution analysis requires
the generation of steps in the problem solution, and a description
of the heuristic processes or behaviors used in generating these .

steps.. Finally, the analysis of problem structure requires not only
the generation of solution paths; but examination of non-solution
paths, blind alleys, and other deeper attributes of the problem.
Except perhaps for certain standard problem types, it is not possi-
ble to obtain structure variables simply by inspection of the prob-
lem statement.

Thus, each method of task analysis in Figure 1.1 is primarily
related to obtaining a particular category of task variables. Next
we shall briefly survey the categories,theMselves.
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Syntax variables are defi in this 'book to be those varii-

bles de7ribing the arrangemen f and relationships among imrds and
symbols in a problem. Note tha he arrangement of words and symbols
may inclOde the use of special t ematical vocabulary:or symbols, as
well as: ordinary Englisix usage. In many arithmetic and algebra prob-
lems, the arrangement of words an èyzubols is closely associated with
oi reflective of the more fundameata mathematical structure of the
problem.

A gieat deal of researCh has enHdone using syntax variables
as independent variables in regress on equations for predicting the
difficulty of 'Nford problems." Althiugh these studies have not
examined syntax variables separately from variables in other cate.;,
gories, it has been found that, for a gebra or arithmetic word
problems, syntax variables account fo significant amounts of the
variance in the number of subjects achieving the correct numerical

. _
answer (Jerman, 1971). It is\less clear whether syntax variables

_

offer predictive power in geometry problems, or problems which do not
have a standard arithmetic or algebraic underlying structure.

The most useful syntax variables will be discussed in detail in
Chapter II. The categories of syntax variables include, for example,
problem length, grammatical complexity, and.data sequence. New syn-
tax variables can be generated by using combinations Of two or more
previously defined variables. Further variables can also be genera-
ted by assigning Indices to variables, produeing measures such as
"aumber of sentences with more than ten words" or "number of words
unfamiliar to more than 50 percent of the subject population."
Al hough these somewhat complex derived variables may add predictive
power in regression studies, they may not be especially useful for
descriptive purposes or for instruction.

Research with syntax variables has provided clear indications
that linguistic variables must be considered in constructing prob-
lems, in order that syntactic difficulties do not interfere with
the variables or treatments of interest. On the other hand, little
research has been done on the effects of variations in syntax on
Problem-solving behavior processes. Studies of-reading comprehen-
sion in ordinary language do indicate that syntactic complexity
is an important determinant of the time and difficulty involved
in language processing. It is also well-known that subjects have
less difficulty with problems in which the syntax makes it possible
to translate directly from a verbal to an arithmetic or algebraic
expression. It would be useful to know much more precisely the
role of syntax variables in the decoding- Orocess of problem solving.
Because-of their easy objective definitioa,it is in the category
of syntax variables that there is the most,immediate opportunity ,

to obtain significant knowledge about problem-solving processing
that can be applied to the kinds of problems encountered in school
classrooms.

//



It is expected that syntax variables bould m st closely influ-
ence Polya's first stage, l'understanding t e probl ."

Content and Context VariaZes

After a problem has been read, the problem solver res onds to it
in terms of'its meaning.. The term "content" is used here its usual

sense to refer to the main substance of a message, as oppoSed to its
form. Thus by content we refer to matheWatica meanings and by con-
text to nonnathematical or incidental maanings in the problem state7
meat.

Often, a problem is stated with respect to some,particular mathe-
matical or mathematicallyi related content area such is number theor,
measurement, probability, and so on. SuCh classifications of problems
by mathematical content define one kind of content váiable. Subcate
gories of content areas,las well as specific descripto of mathe-
matical characteristics, also define content variables. Aiong the
latter are variables such as the type of mathematical expr ion (e.g.,

monomial, quadratic, linear) or type of mathetitical operati ppear-

ing in a problem (e.g., binary, inverse, unary). ,The use of content
variables to construct problems which vary according.to mathematical
complexity has always been a major focus in mathematics textbooks.
Unfortunately, vyry little research has been done, beyond work with-
elementary arithmetic algorithms, to determine the'best sequencing
of mathematical content in problem solving.

Since many problems are presented in a verbal form, eithervritten
or oral, it is important to consider linguistic content. variaples; i.e.,

the use of mathematiCil words or phrases which have an impact on the ,

meaning of the problem. For example, subtraction may be auggested
by the key words "less," "decrease," "minus," "below," and so,forth.
Such key words have an enormous potential effect on students' compre-
hension of a problem.

It is somewhat difficult to distinguish content from context
mariables. The term context is used here,to deicribe the non-
mathematical meanings present in the problem Statement. These may,
however, help to give meaning to the mathematical content. Often the
verbal context or setting of a problem proVides a connection between
mathematical content and its applicationor absence of application to
the "real world.' One important reasonKto study context variables
is to examine the development of students' ability to extract essen-
tial mathematical information from the nonessential non-mathematical
information in a problem.

Contexts may vary along dimensions such as concrete-abstract,
applied-theoretical, or factual-hypczhetical. Other context cate-
gories include thoLy which make the statement of the problem more
or less relevant to the problem solver's interests, age, or
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experience. Also inclu4ed as context variables are those which
relate to the mode of presentation: manipulative, pictorial,
verbal, etc.

Content.and context variables should likewise influence Folya's
iVnderstanding the problem" stage, ea well as the stage "devising A
plan."

Structure Variables

To define syntax, content, and context variables requires little
or co processing of the problem statement. The term."structure," on
the other hand, is used to refer to the arrangement of and mathematical
relationships among all elements of a prcblem, and structure varia-
bles require some method of analysis in order to define them. The
attempt to represent the essence of problem structure 'often results
in an oversimplification or an incomplete representation of a problem.
On the other hand, the precise description and the potential for con-
trol of structure variables may be the most promising area in task
variable research.

In same research, the concept of problem structure has been
limited to a description of the algorithmic procedures or algebraic
equations which underlie many routine verbal problems. In these
cases, it is relatively easy to determine whether problems have
identical or different structures. On the other hand, even with
such problems, it is not clear how closely problems might be struc-
turally related when they are not identical. Once the structure of
a problem has been clearly described, it is possible to investigate
problem-solving strategies which may be, in a sense, intrinsic to
the problem. This understanding of strUcture and applicable strate-
gies is a necessary and valuable goal in developing the teaching of
problem-solving skills.

One of the promising approaches to studying problem structure
variables is state-space-analysis, a generalization of Wickelgren's
state-action tree. Chapter IVwill develop the necessary background
and provide detailii however, a few of the potential outcomes of
state-space analysis should be mentioned here. Virtually any.prob-
lem can be analyzed,\ providing a common ground for researdh. State-

'space analysis makes\it possible to study separately and simultaneously
,the problem and prob1\em solver, by utilizing the state-space to record

problem-solving behav or. This capability helps provide a way to
study how the problem\solver builds internal representations of the
problem and processes information 4uring the solution process. State-
space structures provie a framework within whidh to study chunking,
curtailment, problem symmetry, algorithms, working backward, detour
position, and other poWerful problem-solving processes.

34



Problem structure variables principally affect PClya's stage
11 carrying out the plan," since they are descriptive of a representa-
,tion of the problem which has be created.

Heuristic Behavior Variablas

The usual interpretation of heuristic behaviors centers on the
idea that they are general procedures or hints which help one dis-
°cover or develop a plan for solving a problem. This dharacterization
makes it appear that heuristic processes are independent of the
particular problem being solved. There is no question that a given
heuristic procedure nay be widely applicable to many types of prob-
lems; it is this characteristic of heuristic processes that takes
them valuable for problem solving. Olt the other hand, certain
problems appear to be solved most efficiently, most quickly, most
easily, or most often through the application of a particular heuris-
tic process or set of processes. The structure of some problems may
give rise to specific heuristic behaviors rather than others. An
understanding of the heuristic processes that are problem-specific
adds significantly to our ability to describe.a problem task com-
pletely, and to use it in teaching or researdh.

It should be nnted that heuristic behaviors, when regarded as
task variables, are very different from the task variables discussed
earlier. For example, rather than describing the difficulty level
of problems, heuristic variables are simply informative. Thus, one,
can indicate that "working backward" is particularly useful for,ar'
given problem, but the difficulty level is not implied or suggested
by such a statement. It is conceivable, however, that p lems
solvable by certain heuristic processes are less diff ult than
those not solvable by them.

As can be seen in Figure 1.1, heuristic Jebavior variables are
hypothesized to affect all of Polya's stage particularly those of
"devising a plan" and "looking back." Hedristic processes form the
bridge between the problem statement and' a problem representation,
as well as affecting the transition/6 related problem statements
and representations. Of all the categories of task variables, they
are certainly the most difficult to define and describe precisely.

3. Applijations of Task Variables

The preceding section has introduced four main categories of
task variables, which are further explored in Chapters II through
V. Next let us survey some of he important areas of application
of these ideas, described in th atter part of the book.

r."
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Applications of Task Variables to Research

Most of the research des4ribed in this book utilizes the concept
of task variables to construct sets of Problems, designed to measure
the effects of a particular va*iable or set of variables on problem-
solOing outcomes. The key idea is to vary a single variable at a
time, while holding constant other task variables. The degree of
success in holding constant the variables which are not of experi-
mental interest corresponds to one's degree of confidence that the
observed effects are indeed due to the variable under study.

The study by Goldin and Caldwell, for example, is based on-itai
instrument which holds constant a substantial list of syntax-craria-
bles, content variables, and algorithmic structure v4riables, while
studying the effects on problem difficulty of the-classifications
"abstract-concrete" and "factual-hypothetical." Likewise ehe
studies by Waters and by Luger hold constant problem state-space
variables while varying the problem embodiment, in order to observe
the effects on strategy scores and transfer effects.. The study by
Days varies quantities describing the problem's algebraic represen-
tation to ascertain the effects on problem difficulty, and the study
by Harik examines the consistency of the use of specific heuristic
processes while problem structure variables are held constant and
other task variables are modified. Taken together, these studies
may be regarded as just the beginning of a program of research to
explore various aspects of the model in Figure 1.1.

The chapter by Lucas et al. is of a very different sort.
Addressing themselves to the difficult issue of measuring the use
of particular heuristic processes (An obvious prerequisite to the
reliable study of the problem-specificity of heuristic behaviors),
a group of researchers has developed an elaborate process-sequence
coding scheme for classifying subjects' heuriStic behaviors. The
sdheme itself is intended to be non-problem-Specific, but broad
enough to permit the comparison of heuristic processes employed by
subjects solving very different problems, as well as allowing the
°comparison of processes used by different subjects solving the
same problem. Some preliminary results on the inter-coder relia-
bility of the system are included.

Applications of Task Variables to Teaching

The main concept stressed in this book is the value of explicit
treatment of task variables in the teaching of problem solving.
Through.the creation of sample unit plans, Caldwell demonstrates
the value for teachers of systematically varying syntax, content
and context variables wkili holding structure variables constant.
These are the variablii-iAich are characteristic of the problem
statement, and thus are encountered first by students attempting
to solve verbal problems. She also emphasizes the importance of
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proper sequencing of problem content, in order to maximize the learn-
ing which takes place as a series of problems are solved.

, Similarly, through the creation of sample teaching plans, Luger
argues for the use of structure variables to encourage learning
transfer through the systematic inclusion in initruction of problems
which stand in isomorphic and homomorphic relationships to each other.
This is an idea which has also received support from Usiskin (1968),
who urged the use of problems having identical algebraic structures
but widely varying cactent and context.

Finally, Schoenfeld discusses the explicit use of heuristic
behavior variables in teaching problem solving. Of particular
interest is his discussion of cued heuristic processes--that is,
the idea that identifiable cues within the problem statement itself
can serve to suggest the appropriate process to the student. By
calling attention to these cues in numerous examples,eg convincing
case is developed that the when as well as the how orEeuristic
processes can be taught by the sophisticated instructor.

It is likely that the ideas in these chapters, extensive as
they are, represent only a few of the many implications which the
-study of problem task variables ean have over the years for the
classroom teacher of mathematics.

a
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The Study of Syntax Variables*

by

Jeffrey Barnett
Fort Hays State University

Hays, Kansas

The role of language in the problem-solving process has received
research attention for many years, and a significant amount of
general information has been accumulated. For example, the relatively
high correlation between mathematical problem-solving ability and the
ability to read and comprehend written material has been confirmed by
numerous studies since the beginning of the nineteenth century. If

one subscribes to the view that the first stage of the verbal problem-
solving process involves reading, decoding, and interpreting the prob-
lem statement, it is evident that linguistic variables should have a
definite relationship to verbal problem difficulty.

One objective of Part I of this book is to establish subcate-
gories of task variables more suitable for close examination. It is
convenient to classify linguistic variables into two subtypes. Those
that deal with the meanings of words and phrasesi.e., semanticvaria-
blewcan be considered as content variables and will be discussed in
ChaOter III. Variables that describe the form of the problem state-
ment--its grammatical and syntactic construction are the abbject of

the present Chapter.

The term "syntax" denotes those variables whiCh account for the'
arrangement of and the relationships among words, phrases, and symbols
in problem statements. The two examples below illustrate forms of a
problem that are parallel with respect to content, context, and struc-
ture, but which differ in syntactic complexity.

2.1 How much will Mary's puppy spot weigh at the end of
1 year, if spot weighs 2 pounds at birth and gains
3 pounds every 2 weeks?

*The qaterial.in this chapter is based in part upon work suppor-
ted by the National Science Foundation under Grant No. SED77-19157.
Any opinions, findings, and conclusions or recommendations expressed
in this chapter are those of the author and do not necessarily reflect
the views of the National Science Foundation.

-23-



-24-

2.2 Mary's dogIad a pupiji which she nomad Spot. She
weighed 2 pounds at birth. Mary observed that she
gained 3 pounds every 2 weeks.- that rate, how
many pounds wiZ1 spot weigh at the end of her
first year?

The syntactic structure of Problem 2.2 is different from that
of the second problem. Problem 2.2 has more words and sentences.
It contains several pronouns, which take longer to piocess than
the nouns used in the first problem. The question appears at the
beginning of Problem 2.1 and at the end of Problem 2.2. The data
in the two problems are presented in different orders, with the
order of data in Problem 2.2 farther removed from that required for
solution. The two problems also differ in the form used to repre-
sent numbers.

From this example, it is apparent that some types of syntax
varttbles, such as those describing grammatical structure and symbol
formats, may affect problem difficulty at the decoding stage, while
other types of syntax variables, particularly those involving the
sequencing of information and the positions of sentences and phrases,
interact with a problem's underlying structure and therefore directly
affect the ease or difficulty of processing the information contained
in the problem statement.

A wide variety of syntax variables have been identified and
studied in numerous investigations, particularly since 1969 when a
linear regression model was first applied to describe the difficulty
of mathematical word problems. Unlike many task variables which
depend on an interpretation of the processes to be used (such is
the number of steps needed to arrive at a solution), the definition
and quantification of syntax variables can be derived almost directly
from the problem statement, independently of the method of solu-
tion used by individuals. This not only permits a high degree of
reliability in the determination of these parameters, but also implies
that it may be possible for textbook writers and teachers to manipu-
late syntax easily, producing word problem statements with specific
characteristics.

The results of research related to syntax variables are dis-
cussed in the next section of this Chapter. Although we would
consider it to be technically a content or context variable, "scope
of vocabulary" is included in this discussion, since it is related
to readability and has been used in the study of other syntax varia-
bles. The relationship of syntax variables to reading difficulty
in problem solving is examined from a historical perspective. A
discussion of research on syntax variables in arithmetic word ob-
lems is followed by an examination of research on syntax variables
in other content areas of mathematical problem solving, such as
algebra and logic. Although little has been reported on the effects
of training in syntax, or on the effects of variations of syntax on
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problem-solving behavior, the section concludes with a discusdion
of the few studies that have been done in these areas.

In the second half of this Chapter, a verbal processing model
is suggested in an effort to clarify the role of syntax variables
in the problem-solving process. Five categories of syntax variables
are considered, with attention to how they are defined and made quan-
titative, and why they may be of importance in verbal problem solving.
These categories, presented in Table 2.1, include variables dealing
with (a) length, (b) formats for numerals and symbols, (c) grammati-
cal structure, (d) characteristics of the question sentence, and (e)
sequencing of sentences and data.

In most of the discussion in this chapter, the dependent varia-
bles are product variables in the sense of Kilpatrick, such as the
correctness of the answers or the time in which the answers are
derived (Kilpatrick, 1975). Rarely have process variables been used
as dependent variables, although this might offer interesting possi-
bilities for furthering knowledge about syntax variables in problem
solving. The second half of the chapter will include a discussion
of the potential role of process variables as dependent variables in
problem syntax research. Finally, an attempt will be made to summar-
ize what has been learned about-syntax variables in mathematical
problem solving, and some implications for future research will be
drawn.

1. A Review of Syntax Variables.Research

Syntax Variables and Reading Difficulty

One of the strongest relationships that has emerged from research
is that between reading ability and mathematical achievement. Several
review of research in this area have shown correlations between read-
ing ability and mathematics achievement (including mathematical prob-
lem solving) to range from .40 to .86 (Monroe and Englehart, 1931;
Aiken, 1972). Sizable correlations between problem-solving ability
and reading ability have also been demonstrated. For example, Martin
(1964) found that the partial correlation between reading comprehen-
sion and problem-solving ability, with computational ability partialed
out, was higher for fourth- and eighth-grade students than the partial
correlation between computational ability an problem-solving ability,
with reading comprehension partialed out. Ot er studies have shown
similar results.

`..

Following the suggestions of earlier investigators (Monroe and
Englehart, 1931), efforts have been made to determine more precise
relationships between specific aspects of reading ability, and mathe-
matics achievement and problem solving. Aiken (1972) reported that
the data included in the 1963 Technical Report on the California
Achievement Tests are representative of a number of findings which
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Table 2.1 Categories of Syntax Variables at the Surface Level of Analysis

Syntax Category

--Problem Length

Examples

Number of Characters

Number of Words

Number of Sentences

Elemental Counts (Number of Nouns,

Grammatical Complexity to Pronoun Ratio, etc.)

Formats

Question Sentence

Sequence of Data

-""'"4"..,Pepth and Complexity (Embeddedness,
lingve Means, etc.)

Symbol or Word

Numeral or Word

Position in Problem Statement

ContaiKis or does not Contain
Numerals

Correct Order or Incorrect
Order for Solution*

*The ORDER variable describes both syntax (sequencing of data in
the problem statement) and mathematical structure (comparison
with correct solution order), thus, extending somewhat beyond
the surface level of analysis.



show that "Reading Vocabulary" and "Reading.Comprehension" (both
involving aemantic variables),4"Xechapics of English" (involving
syntax variables), and "Spelling" havesizable correlations with
"Arithmetic Fundamentals" and even higher correlations with
"Arithmetic Reasoning." A number of older studies, as well as
several more recent investigations, have-shown that knowledge of
vocabulary (a component of reading ability) is an important factor,
in the ability to solve mathematical problems. For example, a stud
by Johnson (1949) revealed correlations,of .45, .50, and .51 betwee
three.tests of arithmetic reasoning and the PrimaryMental Abiliti
Vocabulary Test. A. more recent survey of primary arithmetic texts
by Willmon (1971) has dhown that Children are introduced to approxiA,
mately 500 new technical words and phrases.by the time they enter
fourth grade. These results provide a clear indication of the
importance of vocabulary as a variable influencing the ability to
comprehend written mathematical problems.

A particularly interesting study designed to explore the rela-
tionship of difficult vocabulary and syntax to problem-solving
ability was conducted by Linville (1970). Four arithmetic word
problem tests were constructed. _The problems in each were similar
structurally, but varied accOrding.to difficnity of syntax and vocab-
ulary. Fourth-grade students (n = 408) were randOmly assigned to ane
of four treatments: Easy Syntax, Easy Vocabulary; Easy Syntax:, Diffi-
cult Vocabulary; Difficult Syntax, Easy Vocabulary; and Difficult
Syntax, Difficult Vocabulary. Significant main effects favoring the
easy syntax and easy vocabulary tests were found. Not surprisingly,
the investigator also found that in all four treatments, students
of higher general ability and/or higher reading ability performed
significantly better than students of lower ability.

During the past three decades, several attempts have been made
to use the relationship of semantic and syntactic variables to read-
'ing difficulty as an index to classify mathematics materials.
Several types of readability formulas have been used for English
prose, and a few of them, particularly the Dale-Chall formula
(Dale and Chall, 1948), the Spache formula (Spache, 1953), and the
Cloze technique (Taylor, 1956) have been applied to mathematics
texts and problems. A number of investigations WhiCh have employed
one or more of these formulas have demonstrated,a wide range of
readability levels in selected mathematics, textbooks (Shaw, 1967)
and have provided evidence that the readability level of mathematics
problems can have a significant effect on the problem-solving per-
formance of children (Thompson, 1968).

The application of readability formulas to mathematics mater-
ials, however, has not, as yet, been widely accepted as a defensible

approach. Kane (1968, 1970) maintains that readability formulas for
ordinary English prose are usually not appropriate for use with
mathematical materials, in that: (1) letter, word, and syntactical
redundancies are different for English prose and mathematical
material; (2) unlike ore lary English, the names of mathematical
objects usually have a single denotation; (3) the role of adjectives
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becomes more important in mathematical English than in ordinary prose,
and (4) the syntactic structure of mathematical English is less flex-
ible than that ok ordinary' English. Despite these claims, in a more recent
study Hater and Kane (1970) found the Cloze technique to be a highly
reliable and valid predictor of.,comprehensibility of mathematical
materials designed for secondai studen,s.

Very little information is available on the readability level
of mathematics problems as compared to the average reading ability
of students at each grade level. The few studies that have been
done offer conflicting conclusions. For example, after reviewing
the literature on reading in mathematics, Earp (1969) concluded that
the vocabulary of.arithmetic texts is often at a higher readability
level than the performance level of students in classes where the
texts are used. He also noted that there is little overlap between
the vocabulary of reading te-,:s and that of arithmetic texts.

However, different reiults were reported by Smith (1971). After
surveying the readability of sixth-grade arithmetic texts (as
measured by the Dale-Chall formula), Smith found: (1) the average
readability of problems fell within the normal bounds usually con-
sidered appropriate for that grade level, (2) the readaVility levels/
varied widely from problem to problem within the same text, and (3)
the readability levels of the overall texts were generally comparable
to those of related mathematics achievements tests. Based on these
findings, Smith concluded that readability may not be the most impor-
taLt factor in arithmetic problem difficulty for this populatiOn of
students. This conclusion, however, is based on the assumption that
the Dale-Chall formula is an appropriate instrument to use with word
problems in mathematics, an assumption that needs verification
before these results can be meaningfully interpreted.

In another recent study, Knifong and Holtan (1976) analyzed
the written solutions of 35 sixth-graders to the word problem por-
tion of the Metropolitan Achievement Test. They concluded that
poor reading ability could not have beep a factor in 52 percent of
the problems, since errors on these problems were strictly cokputa-
tional or clerical. The role of reading difficulty for the remain-
ing 48 percent of the mistakes.was not determined.

Although the evidence is not conclusive, it is still reasonable
to assume that if the problem solver has difficulty reading a prob-
lem statement, he or she is less likely to be able to understand
and solve it correctly than if the problem can be read with relative
ease. The application of existing methods of' determining readability
to mathematics materials and problems is a plausible approach, but
peehaps what is really needed are formulas or other techniques that
are based on syntactic parameters "specific to mathematical problems.
To understand the importance of reading difficulty to problem-solv-
ing ability, researchers must address themselves to the question of
determining what specific components of reading ability (understand-
ing vocabulary, processing grammatical structures, etc.) affect
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problem-solving'behavior, and how the roles Of these,Components
change over different age groups and prob1 e6 sets. The linear
regression studies discussed belw offer a potentielly fruitful
method for investigating these questioas.

-SyntaxVariatnes in Arithmetia--Word-Pr ob-letts

The most common mathematical problems that students encounter
are arithmetic word problems. These are the problems tylically
presented in textbooks from'grades one through twelve. The number
of steps needed to read' a solution may vary from problem to prob-
lem, but the student should be able to proceed by arithmetic methods.
Often called routine problems, they differ from exercises only in
that the student unst sift through the problem statement to extract
information and select the appropriate algorithm or algorithms to
solve the problems. In aa exercise the student knows which algor-
ithms need to be used.

In recent years, a group of researchers has attempted to dis-
cover the relationship of various parameters of the problem state-
ment to latency of response and problem difficulty through the use
of a step-wise, linear regression model. Using the "counts" of
these variables as the independent variables, it was hoped that
linear regression would yield coefficients which could be used to
predict the difficulty of a variety of verbal problems. Since a
number of these studies will be examined, a brief description of
the linear regression model seems warranted.. The reader'is referred
to the original sources for a more detailed discussion of this model
(Suppes,-Hyman, and Jerman, 1966; Suppes, Jerman, and Brian, 1968).

Using the notation adopted in the original investigation, let
vij denote the jth variable of problem i. The weight assigned to
thejth-variable is denoted by mj. In a given group of sub/ects,
let pi be the observed proportion of correct responses on problemi.
The purpose of the model is to predict the dependent variable, pi.

-To insure that the predicted values of pi will always lie
between 0 and 1, the following transformation ismade:

z
i

log
1 Pi

Pi

The regression model now becomes zi Eimj vii mo. For the special
case when Pi is either 0 or 1, the folloiling tAnsformation is made:

log (2ni 1) for pi 0

4\7-,

log
1

2ni - 1

4 4

for pi 1



,

,

where ni is the total number of stu4nts responding to problem:i. It

should be noted that in the first equation for zi above, 1 - pi appears
in the numerator to make zi increatie maiotonitallif in difficulty, as the
magnitudes of the variables vij increase. ?

\
\ ,

Using the above model in a step-wise linear regression analysis, the
variables vii are ihtroded-iito the regresSion equatiationear-vrime-,
and their cofitribution to'the correlation coefficient R, and tha estimate
of the amount of error variance accounted for by the regression model, R2,
is calculated at +well step. The majority ofithe studies'that have employed
this model have-used R2 as the major criteriOn -or the relative importance

,of each variable in predicting the proporti n of correct responses and
success latency.

The first studies applying this multiple linear regreesion analy-
sis to mathematical problems were conducted at Stanferd University with
elementary school children, operating in a computer-a:misted instruc-
tional mode (Suppes, Hyman, aid Jerman, 19660 Suppes, 4erman, -and Brian,
1968). The problems studied were computational arithmetic prob;ems,
involving one or more of the four basic arithietic operations. Since
these studies did not deal directly with verbal problem*, the readeris
referred to other sources for a discussion of the procedures used in
these investigations (Loftus, 1970; Segalla, 1973; Barnett, 1974).

Before discussing the outcomes oflinear regression studies in the
area of verbal problem solving, let us consider haR syntax variahies
have been quantified in taese studies. A major problem in the indentifi-
cation of sets of well-defined parameters that'relate to or influence
mathematical problem-solving behavior continues tobe that of achiev-
ing a high degree of reliability among experimenters. This problem \

is compounded by the fact that the quantification, of manir interesting
variables may be dependent on the problem solver's method'of solution
as well as the problem task. Most syntax variables, however, can be
quantified with a high degree of reliability directly from the problem
statement, once a few conventions are established. (An exception to this
statement is the variable of "vocabulary difficulty," which depends upon
the ba,7kground of problem solvers.) In most cases,.syntax variables are
quantified by assigniag a unique numerical value to the variable for each
problem statement. These numbers betome the vii in the regression equation.

In general, syntax variables can be quantified in one of three ways.
The first method allows the variable to assume a positive integer value.
For example, the sentence variable is given a value equal to the number of
sentences in the statement of the problem. A word variable is given a
value equal to the number of unfami'Uar words in the problem statement. The
majority of syntax variables are quantified by this method and are often
referred to as "continuous" variables, in the sense that they can assume
any integer value n * 0, 1, 2, .... (The term "continuous" is not used
in the correct mathematical sense.)

A second method of quantif:,ing syntax variables is to assign the
variable a value of either "0" or "1". Such dichotomous variables
are used to indicate the presence (1) or absence (0, of a particular
characteristic. For example, an "order" variable can be assigned a
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value of "1" if the data contained in the problem statement are
presented in the same order in which they tan be used to solve the
problem, and a.value of "Olt otherwise. Since this "order" variable
involves a compariSon between the sequencing of data in the problem
statement (syntax) with the processing,of data in the problem solu-
tion (structure), it might be considered to describe both syntax and
mathematical structure, not syntax alone. 'For convenience it is
included in this chapter on,syntax variables. Many variables deal-
ing with problem structure are of the dichotomous type but, in
general, relatively few syntax variables are defined in this thanner.

Researchers have apparently assumed that neasures on the amount,of
syntactic complexity rather than measures of the presence or absence
of certain syntactic characteristics would yield better predictors
of problem difficulty.

Combination of two or more variables to form a single "compo-
site" variable constitutes a third method of quantification. This
procedure allows each "sub-variable" to be differentially weighted,
according to its assumed or proven importance. The result is a
composite variable which assumes a value equal to a specified
function of the values of its component: variables. Although rela-
tively few studies have employed this method with syntax variables,
the procedure has the potential to generate sensitive variables
with good predictive power that are relatively easy to manipulate.

A first attempt to extend the linear regression model tp mathe-
matics word problcms was made in 1969 (Suppes, Loftus, and Jerman,
1969). In this study, 68 word problems were.presented and solved
in a-computer-assisted instructional mode, using 27 above-average
fifth-grade students. The LENGTH variable (a measure of the number
of words in the problem statement) was used for the first tithe,
along with five other variables related to operations, sequence,
and verbal cues. The precise definition of the LENGTH variable,
and a number of variables of length that have been used in linear
regression studies, are Presented in Table 2.2.

The results of the study were disappointing. The LENGTH
variable and two others were found not to be significant. The
three variables that were significant only accounted for approx-
imately 45 percent of the variance in the proportion of problems
done correctly. However, the organization and procedures used in
the study provided a model for further investigations.

A 1970 study by Loftus used the six variables from the previous
study, plus two new ones, the syntax variables of ORDER (indicating
the sequence of data presented ih the problem). and" DEPTH (a measure
of grammatical complekity). The definition of the DEPTH:variable
and several other definitions of grethmatical complexity variables
are presehted in Table 2.3. A set of 100 problems was adminis-
tered to 16 sixth-grade students, characterized as "low ability."
The students solved the 100 problems after four weeks of practice
on a computer teletype. The results showed an R2 value of .70, a
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Table 2.2 Definitions of Variables of Length

Variable Definition

1. WORDS:

2. NUMWRD:

3. LENGTH:

a

The inmber of written words in the p oblem statement,
excluding numerals. A count of one i assigned to a
-sihgle-iiiii4;-"Nyp-henala word-, or grou of words'that
vould appear as a single entry in a di tionary.

Numerals converted to words is defined the number
of *lords obtained by converting numeral to.wordform
and counting the number Of words.

The number of words in the problem stet nt, that is,
the sum of variables 1 and2 (LENGTH=WORD + NUMWRD).

4, NUMERL: A count of one is given to each numeral in t e problem.

5. WRDNUM: The number of words and the number of numer ls are
defined as the sum of variables 1 and 4 NUM =
WORDS + NUMERL).

6. DIGITS: A count of one is given to each digit in each umeral,

7. WRDGTS: The number of words and digits, that is, the um of
variables 1 and 6 (WRDGTS = WORDS + DIGITS).

8. SYMDGT: The number of symbols and digits in each numer

9 WRDSYM:

10. LETTRS:

11. PUNCT:

12. CERCTR:

13. SYLBLS:

14. AVGWDL:

15. SENT:

16. SENTLN:

17. LGNUWD:

18. LOMXST:

The number of words and symbols, that is, the a
variables 1 and 8 (WRDSYM = WORDS + SYMDGT).

Each letter (and each apostrophe and hyphen) are given
a count of one.

A count of one is given for each punctuation mar

A count of one is given for each character in the
problem, that is, the sum of variables 8, 10, and
11 (CHRCTR = SYMDCT + LETTERS + PUNCT).

A count of one for each syllable of every word (i
WORDS).

The average word length as defined by the ratio of
variablps 10 and 1, that is, AVGWDL. LETTRS/WORDS'r

The number of sentences in the problem.

The average number of wnrds per sentence, that is
SENTLN = LENGTH/SENT.

A count of one for each word occurring after the
first numberand before the last number'in the prob em.

A count of one 'for each word in the longest sentenc
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Table 2.3 Definitions of V

Variable

I. VERBS:

2. ADJECTIVES:

3. NOUNS:

4. ADVERBS:

5. PRONOUNS:

6. NOUN TO VERB RATIO:

lee Describing Orammatioa Structure

DefinItion

The number of verbs in the problem.

The number of adjectives in the problem.

The number of nouns in the problem.

The numberof adverbs and adverbial clauses.

The number of pronouns.

The number of nouns divided by the number
of verbs (NOUNS / VERBS).

7. NOUNTOADJECTIVE RATIO: The number of nouns divided by the number
of adjectives (NOUNS / ADJECTIVES).

8. PRONOUN TO NOUN RATIO: The number of pronouns divided by the
number of nouns (PRONOUNS / NOUNS).

9. VERB TO ADVERB RATIO: The number of verbs divided by the number
of adverbs (VERBS / ADVERBS).

10. SUBCL: The number of subOrdinate rlauses in the
problem.

11. PREPHR: The number of prepositional phrases in
the problem.

12. MAINCL: The number of main clauses in the problem.

13. CLAUSE:

14. WDMAIN:

15. SUBLEN:

16. MCLTH:

17. SCLTH:

18. AVGCLS:

19. DEPTH:

The total number of clauses (CLAUSE
MAINCL SUBCL).

The number of words in the main clauses
of the problem.

The numberofwords in the subordinate clauses.

The average number of words in each main
clause (MCZTH WDMAIN / MAINCL).

The average number of words in the sub-
ordinate clauses (SCLTH SUBLEN/SUBCL).

The averege clause length (the number of
words in ibe problem divIded by the total
numberoftlauses)(AVGCLENGTH / CLAUSE).

The highest value of 'the means of the Yngve
numbers computed for each sentence of the
problem statement (Yngve numbers measure
the degree of "embeddedness" of each word
in the sentence. ,See Figure 2.2 in Section
2 of this chapter).



respectable amount of variance accounted for. &tb the DEPTH and
LENGTH variables made significant contributions 0 the *mount of
variance in proportion correct accounted for, and entered the
regression equation in the third and fourth stepsrespectively,
It should,be noted, however, that the number of sebjects was very
small, and it was assumed that using the partial Correlation
coefitientsw-gmatitzeasure of Importance. I

In the following year, a number of studAes included same of

the previously defined variables, defined niAi ones and extended
the mode of presentation of problems to paper and pencil. Jarman
(1971) reported the results of two itudies. le the first, Searle
reanalyzed the data from the 1969 Suppes, Loftde, erman study,
Using 14 new ve Lebles, including an OlDER variAbl. Both the
ORDER And LENGTH variables were found to be signifidant. Jerman
followed up this study with an investigation using 80 word prob-
lems administered to 20 fifth graders. This wed the first study
that leas conducted in paper-and-pencil mode: Five Variables,
including the syntax variable LENGTH, were found to ,account for
87 percent of the variance in problem difficulty. FUrther support
for the LENGTH variable was found in a study by Jerman and Rees
(1972) and in a follow-up study by Jerman (1972).

At this point it should be noted that direct comparisons of
the importance of variables from one study to another became
impossible. Investigators modified the definitions of the varia-
bles in each study, and used different problem sets and various
grade levels. liore recent studies, however,*have attempted to
shaw similarities between the variables, and have tried to
generaliie results to several grades and problem types.

After six years of experimentation with variable definitions
and the linear regression equations, the time seemed right to
apply these previous results predictively: Using the data from
Jerman's-1971 study with students in grades 4 to 9, Jerman and
Mirman (1972) took the top six variables found in that study and
coded them on a new problem set. Using the resulting regression
model, they then attempted to predict, before administering the
problem set, the proportion of students in a new population that
would correctly solve each of the problems. The results indicated
that the regression model based on pooled data from grades 4 to 9
was unsatisfactory. The data were then reanalyzed, using the same
six variables for each grade level separately. The resulting
regression equations for each grade level gave much better pre-
dictions, with residuals of percentage correct ranging from 4 to
15 perzent. Although these results were not as good as the
researchers would have liked, the study did establish is model
for turther investigations. It still remains for the predictive
equations to be refined so as to yield results in an acceptable
range.
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The application of the regression model to arithmetic word
problems was extended to the junior college population in a com-
prehensive study by Segall& (1973). Convinced of the importance
of syntax variables, Segalla defined 30 variables that included
many syntax,veriables not previouely defined. A set of 172 word
problems was Administered to 44 low-ability junior college maths-

mat cs studenter.--Based-eor-the-alme of the-drop_in-R2 when the
variable was removed from the regression equation, the set of
the six most significant variables included the syntax variables
of ORDER, NOUNS, DEPTH, LENGTH, and ADVERBS.

As interest in the regreseion model began to grow, it became
apparent that syntax variables played an important role in ,deter-

mining problem difficulty for subjects of all ages. In 973,

Krudhinski investigated the relative impoftance of 14 syntax
variables, including eight describing aspects of length, four
describing grammatical structure, and two describing numerals
and the question sentence. Three.sections of preservice elemen-
tary school teachers enrolled in a course in the teaching of

arithmetic were administered a problem-solving test. The amount
of time permitted on the problem-solving test varied from 20
minutes for section one, to 60 minutes for section two, to one
day for section three. Krushinski found that six variables,
NUMBER'OF SENTENCES, NUMBER OF CLAUSES, CLAUSE LENGTH, NUMBER OF
PREPOSITIONAL PHRASES, NUMBER OF WORDS IN THE QUESTION SENTENCE,
and NUMERALS IN THE QUESTION SENTENCE, entered the regression
analysis within the first six steps in at least,two of the three
sections. After the sixth step, the multiple R's for the three
sections, in order of decreasing time limits, were .856, .738,
and .626. These interesting results suggest that as time becomes
a crucial factor, some syntax variables may decrease in impor-
tance with respect to other (non-syntax) factors.

Following the Krushinski study, Beardslee and Jerman (1973a)
attempted to apply Krushinski's 14 syntax' variables to a problem
set appropriate for students in grades 4 to 8. Three test forms
of 30 problems each were prepared using a problem set from a
previous study. The number of words was systematically varied,
so that Form I was the original problem set (Form 2) with one-
third fewer words,and Form 3 was the original problem set (Form 2)

with one-third more words. Eighteen separate analyses were con-

ducted on the data. Only two of the six variables which
Krushinski found to be significant, CLAUSE LENGTH and PREPOSI-
TIONAL PHRASES, entered consistently among the first six variables
in the linear regression analyses. In addition to these two
variables, two other variables, SENTENCE LENGTH and WORDS IN
SUBCLAUSES, entered the regression consistently within the first
six steps on two or more test forms. These results suggest that
it may be possible to identify syntax variables that are important .
for both college and pre-college students. This study is one of

the few attempts to observe the effects on problem-solving perfor-
mance resulting from systematic variations of syntax.
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Using the same m;14 of data, Beardslee and Jarman (1973b) extended
the previous study to include syntax variables not used in the 1973
Krushinski study. In addtion, they investigated a widevariety of
measures of length, to determine which definition accounted for the
most variance in proportion correct. This second purposi Wes of
particular importance since the many definitions of length employed

sevs.ral_Aimarent__studies _made _interpto_r_sttinn_ nf rieults_extremely

difficult. Seventeen variables were defined in the investigation.
The first four, LENGTH, SUBCL, PREPHR, and NUMINQ, were used in the
Krushinski study and the first Beardslee and Jerman study. The
remaining 13 variables included WORDS, NUMWRD, NUMERL, WRDNUM, DIGITS,
SYMDGT, WRDGTS, WRDSYM, LETTRS, PUNCT, CHRCTR, SYLBLS, and AVGWDL.
Nine of these, including LENGTH, WORDS, WRDNUM, WRDGTS, WRDSYM, LETTRS,
ORCTR, SYLBLS, and AVGWRL, were considered to be variables of length.
Tbe 44finition of each of-these variables appears in Tables 2.2 and
2.3. althoUgh none of the variables was found to account for a
significant amount of the variance for all grades, five of them,
NUMERL, PUNCT, AVGWDL, SUBCL, and PREPHR, were significant for
several grades for.one or more test forms. None of the nine.length
variables was shown to be superior to any of the other length varia-

..

bles. It would appear that, although the many different definitions
of length Use different size units to obtain elemental counts, they
are all about equally correlated with problem difficulty.

Although most of the linear regression studies included a
number of kinds of task variables, the dominance of any particular
category of variable (structural, computational, syntactic, etc.)
in determining prob1em difficulty was not established. This ques-
tion was investigated by Beardslee and Jerman (1974) in a study
involving five "structural" variables, four "syntax" variables,
and twelve "topic" variables. A 50-item achievement test was
administered to fourth- and fifth-grade students. Based on a
regression analysis involving only the twelve topic variables,
four were selected to be combined with the five structural and four
syntax variables. The results showed.that three variables made
significant contributions to the amount of variance accounted for;
the topic variable GEOMETRY and the two structural variables NOHC2
(a variable dealing with the number of "carries" in multiplication)
and COG LEVEL (a variable reflecting the cognitive level of a
problem, based on a classification by Avital and Shettleworth).
Although none of the syntax variables were found to be signifi-
cant, the total amount of variance accounted for was only .47.
Despite this disappointing result, this study\established the need
for a more inclusive model. The experimenters'imated, "None-the-
less some encouraging signs seem evident. One, that a combination
of different classes of variables produces a higher R than using
only one class" (Beardslee and Jerman, 1974, p. 10).

Another study wbich investigated classes of structural varia-
bles was conducted by Barnett (1974). After analyzing the results
of the ptevious regression studies, it was noted that the variables
investigated ref1ect_d either the linguietic, computational,
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operational, or procedural complexity of arithmetic word problems.
Defining for each of the above categories a composite variable, the
resulting set of four independent variables.accounted for approxi-
mately 64 percent of the variance in difficulty. The LINGUISTICS
variable consisted of the sum of two syntax variables of length and
the semantic (content) variable of "mathematics words." Using the
four_independent composite variables as a basis, four instructional
units were constructed to-help students overcome the difficulty
attributable to each variable.. Five parallel forms of a 20-item
verbal problem-solving test were constructed, in which the composite
variables were systematically varied. The four instructional units
were separated by the five parallel forms of the test, and adminis-
tered to 150 college juniors, randomly assigned to either an experi-
mental group or to one of two control groups (the control groups
received instructional units unrelated to problem solving). The
results showed that the instruction based on each of the variables .

was significantly effective in improving problemsolving"performance.
Interestingly, the amount of variance accounted for by the set of
variables, and the position of each variable in the regressioh
equation, remained relatively stable across the five tests. These
results present a further case for the use of composite variables
and suggest that these can be rather stable measures in predicting
problem difficulty.

To summarize, the results of several of the studies that have
used the regression model are shown in Table 2.4 (based on data
suggested by Segalla, 1973, p. 60, and Barnett, 1974, p. 17). The
reader is cautioned in interpreting the table, since the data are
based on a variety of subjects, populations, problem sets, and
different definitions. Subject to these limitations, the table
reveals that syntax variables, particularly measures of length,
consistently enter the regression equation in the first six steps.
It would appear from these studies that the syntactic complexity
of arithmetic word problems is a definite contributor to problem
difficulty. As we shall see in the next section, the linear
regression model has also been used with success to predict the
difficulty of problems other than arithmetic word problems.

Syntar Variables in Algebra and Logic Problems

One expects to find relationships between syntax variables
and problem difficulty, using problem sets involving algebraic
solutions as well as arithmetic solutions. Problem statements
which lend themselves to translation into algebraic form may
include well-defined variables that can be used to predict
difficulty with high reliability, due to consistencies in the
"language" of equations.

Cook (1973a) attempted to apply the,results of previous
regression studies to a set of algebraic word problems solved



Table 2.4 Variables Entering in the First Six Steps for Major Studies Since 1969

Suppes (1969) SEQ COW

Loftus (1970) SEQ OPER

Jerman (16 var.) OPER V. CUE

Jerman (21 var.) OPER CONV

Jerman (CAI, 19 var.) OPER2 LENGTH

Jerman (Pen., 19 var.) LENGTH NOMC2

Jerman & Rees (1972) LENGTH NOMC .

Jerman (1972) NOMC QUOT

Beardslee & Jerman (1973) CL. LEN PREP

Krushinski (1973), SENT. 'CLAUSE

Merman (1973) LENGTH QUOT

Segall& (1973) MEMORY2 ORDER1

Beardslee&Jerman (1974) GEOMTY COGLEV

Barnett (1974) OPER PROCED

OPER V. CUE STEPS LENGTH

DEPTH LENGTH CONV V. CUE

DIV LENGTH FORMULA
S
1

LENGTH ORDER2 DIV
S2

ORDER RECALL
S2

QUOT DIST COLC2
S
1

QUOT DIST COLC2
S
1

LENGTH RECALL CONV DIST

SEN.LE. SUBCL

CL. LEN. TREP NWOQUE NUMERL

NOMC2 RECALL OPER3 CONV

V. CUE OPER PRO. N DIST

NOMC2

LING

Note; Variables describing length and syntactic complexity are underlined.
The variables that have not been previously defined in this section include: Variables
describing the sequence of problems and operations (SEQ, Si, ORDER2), conversions of units
(CONV), needed recall of facts and formulas (RECALL, FORMULA), required operations and
steps (OPER, STEPS), and computations with numbers and specific operations (DIV, NOMC,

QUOT, COLC2).

-
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by college students Twenty-six vgriiblsa,. including five arithmetic .

variables from the 1972 Jerman study; thifteen algebraic variables
(dealing with translations and equations); the syntax variables
WRDNUM (a measure of problem length), SENT (the number of sentences)
NUMQS (a variable relating the presence of numbers in the question
.sentence), and PREP (the number Of prepositions) fram the 1973
Krushinski study; and four additional syntax variables (NUMERL,
QUENL, LGREL, and LG)OXST) were computed for 28 word problems.
LGREL was defined as a measure of Cie numerical relationships in
the problem, and LGMXST was defined to.be the.number of words in
the longest sentence of the problem statement. The problem set
consisted of one consecutive-integer problem, two distance problems,
three age problems, fOur angles-of-triangles problems, four direct'
variation problems, and seven miscellaneous problems.

Two translation variables, three syntar variables, three arith-
metic variables, and four equation variables entered the regression
equation on the first 12 steps, accounting for over 96 percent of
the variance in proportion correct. The variable Lamm had the
highest carrelation with the observed proportion correct, with an
R2 value cf..2962. The variables LGREL and NUMQS entered the
Legression equation in the eighth and tWelfth steps respectively.
The study indicates additional support for the effect of syntax.
variables of length, although the definition of lenkth-in this study
is different from that used in previous studies. Per1ap g the most/

encouraging aspect of this invegtigation, however, is the relativey
high value for R2 at the sixth step (.8040). This re lt suggests
real potential for the use of the linear regression mndel with prob7
lems of this type.

In a second study conducted the same year, Cook (1973b) Imves-
tigated the relationshipé of 41 variables to problem difficulty
using 19 algebraic word problens selected from the National Longi-
tudinal Study of Mathematical Abilities Y and Z Test Batteries.
All problems selected .required the set-up and solution of linear
or quadratic equationLin one variable. The syntax variables
investigated included those fram the previous study except PREP,
QUENL, and NUMQS. A new variable, LGNUWD (a count of 1 for each
word that occurred after the first number and before the last
number in the problem statement) was also added.

The results showed one arithmetic; one translation, .three
equation, and one syntax variable, SENT, entering on the first
six steps of the regression equation. Three other syntax varia-
bles (LGREL, LGNUWD, and WRDNUM) entered the regression equation
on the ninth, tenth, and twelfth steps respectively. Although
the variable LGNXST, which entered the regression equation first
in the last study, was one of the last to enter in this study,
the continued presence of variables of length in all but a few
studies is a strong indication that this variable plays anzAmpor-
tant role in problem difficulty, and deserves continued systematic
investigation.

5
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Jansson (1974) applied the limp regression model in an explor-

atory investigation e.esigned to identify which variables strongly
influence the relative difficulty of judging simple deductive argu-

ments in verbal form. A simple deductive argument was defined to
be a chain of reasoning involving two premises and a conclusion.

Combining results and suggestions from previous studies with
research on logic development, Jansson defined 12 variables which
included the syntax variable WORD and the new ones listed in Table

2.5.

Three tests of class and conditional reasoning were used.
(Class reasoning is of the form "All P's are Q's." Conditional

reasoning is of the form "If P then Q.") On each item,-the
student was required to decide if the c6nclusion was valid or
invalid, or if there was not enough information to decide. The

number of items ranged from 22 to 40..

On two of the three tests,-the variable NEGP1 entered the
regression equation on the second step, with an average value

of .73. The variables WORD and NEGP2 also entered consistently
in the first six steps. Although the positions of each varia-
ble changed on each test, a relatively high amount of variance
in the proportion correct was accounted for. Further evidence

for the effects of length variables (the variable WORD) was
obtained, as well AS new evidence for variables reflecting the
frequencies of uegations.

The results of the Jansson and Cook studies are encouraging.
R2 values in all three studies are respectable, and the repeated
occurrence of many of the same variables lends support to the

effects of syntax variables in many types of verbal problems.

Our discussion throughout has focused on verbal problems of

a routine nature. The question remains as to haw syntax variables
affect the difficulty of non-routine verbal problems. Unfortu-
nately, there is almost no research on the role of syntax
variables in non-routine problems. It seems reasonable to
conjecture that a complex syntax %Jill make any type of verbal

problem more difficult to solve. However, non-routine problems
tend to require higger cognitive processescfor solution, and
therefore other categories of task variables, such as structure
variables, may play a more important role.

Critique of the Linear Regression Arodel

The linear regreseion model previously discussed has shown
promise as a research tool to identify which task variables
affect problem difficulty. The technique is based on the
assumption that the relationship between selected task variables
and problem difftculty is linear. While the results of some
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-Table 2.5 Definitions of Variables Describing SimOie Deductive Arguments

I. A count of 1 for each wort in the first premise.

2. WP1/152: The ratio of the number of words in premise. 1 to
the number of words in premise 2.

3. =I: The average word length in number of letters in
the total argument.

-4. NEGP1: The number of negations in the first premise.

5. NEGP2: The ntimber of negations in die second premise.

6. NEGC: The total number of negations in the conclusion
of the argument.

7. TOTNGS: The total number of negations in the entire
argument.

6



studies suggest that a linear model. fits 'the data reasonably well,
it is not clear that a different model would not fiethe data
better.

Since the linear regression model was first applied to.verbal
problems in mathematics, it has fallen short of being aal accept-
ably Precise technique for predictirg probl.emr.solving behavior.
This may be due-to the inapproPriatiness_of the linear model in
explaining the relationship of task variables to problem difficulty,
or to the lack of methodological paradigMe and inconsistencies in
the use of the model. Furthermore, research in problem solving haa
shown that a large'variety of task variables (content, context,
syntax; structure, etc.), as well as subject.and situation varia.
bles have an influence on problem solving. It is unreasonable to
expect that."' model which does not take all of these variables
into.account will be able to predict accurately problem-solving
success across subject populations gnd across problem types. In
a study dealing with only one category of task variable, say
variables of syntax, the total amount of variance accounted for
in the proportion correct may reasonably be much less than 100
percent. If it does approach 100 percent; this may be due to
inadvertent correlations in the problerim themselves between syntax
variables and other task variables Xsee .beldw). The real value of
the linear regression model, then, may be in its use to determine
the relative importance of major categories of variables, or the
relative importance of specific variables within a particular cate-
gory. Thus, the development of a complete linear regression model
may not be a valuable undertaking.

Another concern with the linear regression model the lack
of independence of the variables that have been investi ated.
Althotysh someigriables are independent of each othet ii terms
of the method used to quantify them, they are often noeindependent
conceptually. For example, the length variable is elderly related
to a number of variables which also are quantified by elemental
counts. It is also very probably correlated with such non-syntax
variables as the number of givens and the number of steps to solu-
tion. The significance in the regression equation of the length
variable alone does not convey a great deal of information in
helping to understand the problemrsolving process or contributing
to the development of a model of problem-solving behavior. The
important question here is, "What particular aspects of problem
length make it important in the problem-solving process?" Ques-
tions of this nature have not, as yet, been addressed in linear
regression studies. It is important to create problem sets in,
which particular syntax variables are intentionally held constant
and others intentionally varied, in order to approach such questions.
It is also important to note that thelinear regression model makes
no provision for interactions among the variables. These can be
incorporated only by defining new task variables as (non-linear)
functions of previously defined variables,*and then carrying out
a new linear regression.

58
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The* of the vragriasion =dal as ai4 indicatorlof ihe relative \
;

importance Of specific variables could al be improved.'.Investiga- ,

\
,

1

tions using comparable populations would e helpful ip,r finin4 the
regression coefficients to form a mbdel-t t is accepteb e for a- ,

particular population. More comprehensiv studies actos grade
levels could help to establish which vari4blss are the st impoT-;tent for each level of student developmen This info tion vould
be most useful in desi§ning instructional material. Theluse of
Similar problem sets by different.researc ere Would p rmit greater
replicability of findings.

,

Additional applications of the lineedr regression model itself
.N,

might include the use of different/dive ept variable tuch'as
latency of response) and the proportiou f the use of orrect
method, in addition to the proportioo\of correct ers. 'Differ-
ent criteria for establishing the import nce of each variable ahould
also be examined, such as the size of the, regression/coefficient,
the size of the parti4l correlation.cpefficient, theorder of entry
into the regression ecuation, the contribution to thg total vari-
ance in the preporfion correct, and size of the dropin R2 taused
by removing the variable from the regression equaiioo.

,

To.summarize, the linear regresiion model is valtFablefor
identifying task variables aesociated with problem difficulty,
but yields little information on how the variable in question
affects the difficulty of the problem.

Syntax Variables and Instruction

It seems reasonable to expect.that instruction designed to
help children with syntax and semantics could reduce the diffi-
culty of many problems. Research on this hypothesis has been
conducted for many years. A number of studies showed that
instruction in the interpretation of specific math'ematical terms
produced significant gains in problem-solving ability (Dresher,
,1934; Johnson, I944)., Fewer studies have been directly concerned
with instruction in syntax. In one study, Sax and Ottina (1958)
demonstrated that specific instruction in syntax resulted in
improvement in mathematics achievement for seventh.graders who
had no previous training in mathematics in their-earlier school-
ing.

At this point, it should be emphasized that any discussion
of training in syntax must include.a discussion of reading instruc-
tion, for it is clear that the ability to understand the meanings
of words and the syntax of'written statements is essential in
learning to read all types of material (Aiken, 1972). However,
as Henney (1971) notes, students often find reading mathematics
to be different and, in general, more difficult than reading
other materials. Spencer and Russell (1960) hatiie pointed out
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that students tkperience difficulty-in-reading arithmetic material
because: (1) the names of certajm materials are confusing; (2)
number languages which are patterned differently from the decimal
system are used; (3) the language of expressed fractions and ratios
is complicate4 (4) charts and other diagrams are frequently con-
fusing; and (5) the reading of computational procedures requires
specialized skills.

The question of,iwheler reeding instructira, particularly
reading instruction in ma hematics, can have a positive effect
on the ability to understand mathematics and mathematics prob-
lems has only recently beer investigated. Perhaps due to emphasis
in the moderwmathematics rograms of the early 19600 on.increased
use of symbolism and verbal\explanations, a nuMber of studies were
conducted to determine the effectiveness_of reading instruction on
mathematical achievement and\problem solving. Gilmary (1967)
found that elementary schoolchildren in an experimental group
who received instruction in bOth reading and arithmetic gained
one-third of a grade more on ihe Metropolitan Achievement Test--
Arithmetic than did a control group which received instruction
in arithmetic only. The results were even mote pronounced, favor-
ing the experimental group, when differences in I.Q. were controlled
statistically.

Howeve, in a later study, Henney (1969) tested the effects
of 18 lessons on reading verbal problems with 179 fourth-grade
students. Approximately half of this group received the lessons
over a nine-week period. During the same time period on alter-
nate days, the other half of the students studied end solved
verbal problems in any way that they chose, under the supervision
of the same teacher. The results showed significant gains for
both groups over the nine-week period, but no significant differ-
ences were found between the groups on the posttest.

&few recent studies have examined specific instructional
techniques. Earp (1969) noted that verbal problems which have
a high conceptual density factor include three types of symbolic
meanings--verbal, numerical, and literal-within a single problem
task. He maintains that three kinds of reading adjustments are
required (that is, adjustments from the reading pattern used in
ordinary English prose): (1) adjustMent to a slower yate than
with narrative materials; (2) varied eye movements, including
some regressions; and (3) reading with an attitude of aggressive-

ness and thoroughness.

A number of suggestions for helping students read word prob-
lems have emerged from the literature. Earp (1970), -for example,
has suggested five steps in reading verbal problems:

(1) Read first to visualize the overall situation.

(2) Read again to get the specific facts.

co
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?(3) Note difficult vocabulary and concepts.

(4) Reread to help plan the solution:

(5) Reread the problem-to check the procedure and solution.

The effectiveness of the use of the above five steps was tested in
the study by Barnett (1974) described in the previous section.

Several other attempts have been made to design instructional
procedures to help children read mathematics materials. Taschow
(1969) suggests a remedial-preventive program in reading mathema-
tics. Students are first given a Group Informal Reading Inventory
to determine which students have difficulty with mathematical
reading. In the second phase, a five-step program called the
Directed Reading Activity in Algebra is given to each child. The
five-st;i3 DRA consists of: (1) readiness, (2) guided silent read-
ing, questions, (4) oral reading when needed, and (5) applica-
tion. /While this program does not provide instruction in specific
syntax variables, the exposure and practice.with reading mathematics
materials can help students learn to cope with the more difficult
syntax structure found in verbal problems.

Another program offers more specific instruction in process-
ing syntactic structure. Dahmus (1970) suggests a "direct-pure-
piecemeal-complete" ()11PC) approach to solving verbal problems.
In this method, the student is encouraged to translate the data
presented in the problem into mathematical sentences, by concen-
trating on a few words at a time. He or she gradually learns to
put together the "piecemeal" mathematical statements into equations,
and, finally, into systems of equations. It is clear that the
ability to translate data 'in problem statements into mathematical
symbols is one of the most important aspects of general problem-
solving ability. It seems that it is also one of the most diffi-
cult abilities to cultivate. Several procedures similar to the
one above have been suggested, but it is not yet clear that any
of these procedures are effqctive across a variety-of student.
populations and problem types.

In conclusion, two points should be noted. First, the ability
to process English syntax is crucial to reading ability. The
studies discussed above suggest that instruction in syntax results
in improved reading comprehension. Secondly, the ability to read
and the ability to engage successfutky in mathematical problem
aolving are directly related. As Aiken notes,

. instruction in reading in general or the reading
of mathematics in particular improves performance in
the latter subject. It Seems reasonable that attempt-
ing to cultivate the skill of reading carefully and
analytically in order to note details and understand
meanings, thinking about what one is reading, and



totranslating what is r into special symbols would improve
performance\on many type of mathematical problems. (Aaken,
1972, p. 18)

What is not clear at this point is the relative importance of the
various syntax variables to the design of instructionil material.
It is hoped that future research will address this question through
Coordinated investigations to vary systematically individual syntax
variables in a variety of verbal problem settings.

2. The ClassIfication and Definition
of Syntax Variables:

A Verbal Information Processing Model

In the previous section, a number of investigations of the role
of syntax variables in verbal problem solving have been consid,ered.
It may now be productive to examine in tore detail how syntax para-
meters are incorporated into the hierarchy of task variables intro-
duced in Chapter I (Figure 1.1). The purpose of that hierarchy is
to suggest the relationship between Polya's stages of problem,solv-
ing and the types of task variables,and between the types of task
variables and the levels of task analysis. Here we shall consider
syntax variables with respect to the detailed sequence of processes
used by the problem solver.

Figure 2.1-proposes a verbal information processing model on
which the present section is based. The model magnifies a portion
of.Figure 1.1, expanding the "understanding the problem" stage des-
cribed by Polya. We shall then redefine the iore significant syntax
variables discussed in the literature and examine them in relation
to the proposed model.

When the problem solver is confronted with a problem statement,
he or she enters a translation or verbal processing stage, which can
be thought of as divided into two parts. During the decoding sub-
stage, the problem solver interprets the problem statement. This
is followed by an encoding substage, where the data contained in
the problem statement are transformed into a usable form (for
example, mathematical sentences) that assists with the problem
solution. This process of decoding and encoding enables the prob-
lem solver to translate the original words, phrases, numerals, and
symbols into meaningful expressions, before proceeding to the com-
putational stage of problem solving.

It is in'the decoding substage that the problem solver must
process syntactic and semantic information; thus, syntax variables
are expected to affect the verbal problem-solving process at the
surface level, during the decoding substage. We suggest that this
substage may be usefully thought of as composed of three separate
processes which interact with each other as the problem solver
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Figure 2.1 Problem iyntas and Information Processing
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reads through the problem 'statement: recall from Zong-teemmanory,
storage in and recall from short-term memory, and reorganization
of information.

As each 14rd or phrase in the problem statement is encountered,
the problem solver must rezall and comprehend its meaning in its
grammatical context, drawing on long-term memory. Complicated or
unfamiliar grammatical structures may make this recall and compre-
hension more difficult. Lengthy problems contain more words, more
grammatical structures, and often quantitatively more information,
necessitating greater use of recall and comprehension from long-
term memory. The formats of symbols or numerals which are unusual
or unfamiliar may cause momentary pauses in language processing,
pending recognition (access to long-trm memory) or conversion to
more familiar formats.

Concomitantly with recall and comprehension, the problem
solver may store selected items of information in short-term memory
for future use. It should be noted here that for the'purpose of
examining task variables, the term "short-term memory" refers to
storage of information contained in the problem statement at hand,
while "long-term memory" refers to knowledge possessed prior to
encountering the given problem. The usage of these terms is there-
fore slightly different from that found in the psychological liter-
ature.

As the problem solver reads the problem statement, information
may be stored in a variety of ways, as illustrated in the following

example:

2.3 Ma. Fuller drives due north for 100 kilometers,
and then due east for 358 kilometers to Inter-
national Airport. She then takes a plane which
flies in a straight Zine back to her home where
she started her trip. How many miles did the
plane fly (with respect to the ground) between
International Airport and Ms. FUZZer's home?

Reading this problem will elicit information from long-term memory,
and produce a number of mental images which are stored in short-
term memory. These images may be augmented as more information
is processed. For some problem solvers, "due north ... and then
due east" may produce an image of a right triangle. The numbers
"100" and "358" may be stored as numerals, or even added to the
triangle image as labels. Mathematical terms such as "kilometers"
may also be stored in short-term memory, along with the relation-
ships between items of data and quantifiers. For other problem
solvers, the words "due'north ... and then due east" may suggest
a perpendicular relationship of two vectort:, without generating
the clear mental image of a triangle. This relationship may or
may not trigger he recall of the Pythagorean Theorem from long-
term memory. is also possible that the presence of the numbers
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100" and "358" could be noted in short-term seamy, but not the
actual numbers themselves--in this situation, the problem solver
might scan the problem statement again to pick out the nue/ars
when they are later needed in a mathematical equation.

Consider a second example:

2.4 Five oak trees &topped 37, 56, 108, 87, and 25
acorns respectively on likinday, and 45, 53, 68, 40,
and 38 acorns respectively on Tuesday. Based on
this group of five oak trees, what is the average
number of acorns dropped by an oak tree during
this two-day period?

In'this problem it is likely that many problem solvers would not
actually form and store mental images of the action specified in
the problem statement--i.e., acorns being dropped by oak trees.
Some items of information might be stored directly, such as the
key word "average." The presence of numbers such as "37, 56, ..."
might be noted, without their actual values being stored. The
term "five" might be stored as a word, or more ).ikely as the
translated numeral "5." In short, it is clear that the kinds
of information which ate stored in short-term memory, and'the
form of the information stored, will vary widely from individual
to individual.

Again, same generalizations about ttl effects.of syntax
variables can be made. Lengthy problems which contain many items
of information may place considerable demand on short-term memory.
The problem solver may have difficulty keeping track of all the
data or deciding which items will be needed and should be stored.
Grammatical structure variables, such as the number of pronouns,
may place additional demands on short-term memory, since the
problem solver must remember to which noun each pronoun referti.

Finally, in many problems the data may be presented in a
sequence which requires rebrganization as the information is
stored, into more usable or recognizable forms. The position
of the question sentence may Influence how the given information
is initially stored in short-tert memory, And whether or not
subsequent reorganization takes place. Thus the model in Figure
2.1 includes "reorganization" processes as a third and crucial
component in the decoding substage. The reorganization process
may take place before the data are stored in short-term memory
or, as more information is accumulated, whenever it becomes
useful to rearrange the information in short-term memory.
Reorganization, as well as recall-comprehension and storage, is
not necessarily a conscious, willful action on the part of the
problem solver; it may take place in a rapid, nearly automatic
fashion.
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After interpreting and, decoding the problem statement, the
problem solver may begin a structural analysis of the task, attempt-
ing to encode the relevant data into a representation suitable for
solution by algorithmic procedures. During or after this encoding
substage, the problem solver may discover a contradiction, error,
or difficulty; or insufficient information may prevent the comple-
tion of the encoding process. Any of theie happenstance. may
necessitate a return to the decoding substage, where the problem
solver will reread and reprocess the problem statement to correct
any discrepancies, reorgaAize away any difficuAles and store
additional needed information.

Thus the verbal processing stage is characterized by dynamic
mental activity, involving a great deal of movement between the
decoding and encoding substages. Within the decoding substage,
there is similarly considerable movement among recall-comprehension,
reorganization, ana short-term memory. These three processes occur
during the act of reading the problem statement, not necessarily in .
any particular order after the entire statement has been read.

During the decoding substage, syntax variables influence the
amount and complexity of the processing that is required. It is
clear that content and context variables, discussed in Chapter III,
will influence this substage as well. For example, familiarity
with the meanings of mathematical terms facilitates recall-
comprehension from long-term memory, as well as storage in and
access to short-term memory.

The following problems illustrate certain qualitative aspects
of the verbal information processing model.

2.5 If the hypotenuse of an isosceles right triangle
is 16 cm, what is the sum of the lengths of the
too legs?

In Problem 2.5, interpretations of the mathematical terms
"hypotenuse," "isosceles," "right," "triangle," "cm," and "legs"
may be recalled from long-term memory, and reorganized to form a
mental image of the overall situation. Alternatively, some of
these terms may trigger the recall fram long-term memory of the
Pythagorean Theorem. Many of these terms, and others such as
"16" and "sum," may be stored in short-term memory and used later
in the encoding stage. Since the problem cannot be solved directly
from the Pythagorean formula by treating the hypotenuse as the
unknown variable, same reorganization of the data will eventually
be necessary. In this problem, mathematical content variables
(mathematical topic, key words, and mathematical vocabulary)
directly and hmportantly affect the decoding substage. With
respect to syntax variables, the problem length is comparatively
short, and the major complexity of grammatical structure is the
nesting of the prepositional phrases in the question sentence.



2.6 Bath lives on the corner ea square oity Hook, and
her friend Nancy lives on an adjacent corner of the
same block. Nancy's friend SUe lives on the other
corner adjacent to Nancy. The length of the diagonal
from Beth's house tO Stte's house is 280 meters. How
fdr does Beth have to walk to SUe4s house ifsha must
stop to pick up Nancy on her way?

Although Problem 2.6 requires the same mathematical procedures
as Problem 2.3, its syntax is more complex. The very first indepen-
dent -clause contains nested prepositional phrases. Many of the
words which must-be recalled from long-term meMory are relational

.
terms (such as "adjacent"), which must be interpreted in their
proper syntactic context. This problem also contains severaLaction
verbs which must be processed and stored for use during the encoding
stage. The pronouns "she" and "her" may cause mon zary pauses
while the problem solver looks back or recalls ;. 3rt-term

memory the nouns which they modify. Same of tht inical maphe-
matical vocabulary is 'absent, whiih might for this problem delay
the needed access to the Pythagorean Theorem in long-term memory.

Problem 2.7 represents one version of a well-known non-routine
problem. Its structure will be examined in more detail in Chapter
TV.

2.7 Three missionaries and three cannibals are pn one
bank of a rivir., with a rowboat that will hold at
most two people. How can they cross to the other
side of the river, in such a manner that mission-
aries are never outnumbered by cannibals on either
riverbank?

Again in this problem, interpretations of terms such as "mission-
aries," "cannibals," "rowboat," "outnumbered," etc., may be
recalled from long-term memory. Although the problem can be
solved without actually understanding the meanings of the words
"missionaries" or "cannibals," knowledge of these terms may per-
mit more effective storage of the rule that cannibals must never
outnumber missionaries. This rule must be held in short-term
memory, and probably accessed z.everal times during the course of

problem solving.

Figure 2.1 proposes a rather naive, idealized version of the
process of decoding the problem statement, which we have examined
partially and qualitatively for a few problems. In the remainder
of this section we shall discuss in detail five categories of
syntax variables which have been studied in the literature in
the previous section, and attempt to understand using the model
how they are most likely to affect problem difficulty. In some
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casts, this will guide us towards preferred definitions or suggested
redefinitions of the variables for purposes of research.

Length Variables

Table 2.2 contains a liseof 18 variables of length which have
been investigated in the literature. Let us discuss these variables
with respect to the decoding processes in Fignre 2.1.

. Lengthy problems usually contain more items of information and
mere informatiop not directly related to the problem solution. A.
the problem length increases, greater stress may be placed on short-
term memory. -If the problem solver is not able to hold all of the -
information in an accessible form in short-term memory, repeated
processing of Ole problem statement may be necessary, or additional
reorganization may be required simply for the purpose of retaining
the information. The eff@rt to try to "hold" all of the present
information may result in a loss of direction, or foster a feeling
of confusion or frustration.

Problem length 4s been studied by means of the number of words,
phrases, or sentences in the problem statement, as well as by means.
of the number of characters or letters and the number of syllables.
It seems apparent that thenumber of character, letters, or sylla-
bles ought not to affect directly the stress on short-term memory,
since words and phrases are usually remembered without the separate
and distinct processing of each individual character or syllable.
Thus the variables LETTRS, CHRCTR, and MAILS probably do not
directly describe stress on short-term memory. Similarly, it is
extremely rare for units as small as individual characters or
symbols to be reorganized during the course of problem solving,
or individually to evoke recall from long-term memory and compre-
hension. Thus, the verbal processing model suggeststhat these
variables are igappropriate for the prediction of problem diffi-
culty, being associated with it only by virtue of their correlation
with other length Variables.

The variables WORDS, LENGTH, WRDNUM, WRDGTS, and WRDSYM are all
versions-,of word counts, with various combinations of symbols,
digits, and numerals added for completeness. Length variables
of this type are appropriate for the prediction of problem diffi-
culty under the_assumption that each word represents a syntactic
and semantic processing unit which can be stored in short-term
memory or evoke recall from long-term memory. It is evident that
this assuription is a kind of approximation, for in many cases it
is a phrase which functions as a unit in this sense (the variable
WORDS takes this into account to the extent of assignin a count
of "1" to a group of words which would appear in the dictionary as
a single entry). From the standpoint of syntactic and semantic
units of processing, it seems most appropriate to count each numeral
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as equivalent to a single word (rather than.to count each digit or
to-count the number of wards in the Word form of the numeral). Simi-
larly it would seem most appropriate to count each symbol (such as $)
as a single word.

Often, but not always, a problem with many sentences is more
difficult than a problem with only one or two sentences. This
variable (SENT)'is.not simply another way of rJunting words, but
is based on the assumption that each sentenc4 contains at least
one complete idea, action sequence, or organizational relation-
ship: Indeed; the problem solver may treat the ends of whole
sentences as.natural pleces to pause (even momentarily) to reflect
.on what has been read. The new, idea may then be reorganized and
integrated with other ideas da&action sequences from other qen-
tences, before more material is read. Thus,*SENT would be expected
to affect problem difficulty principally through the increased load

on the reorganization of information.

However, inversely related to the "number of sentences"
variable SENT is the "average sentence length" variable SENTLN.
If, indeed, sentences are considered to be the appropriate units
for reorganization of information, it is reasonable to expect that
the longer the unit, the more items of irformation it may contain,
the greater the load on short-term memory prior to reorganization,
and the more complex the reorganization that is necesSary. Carry-
ing this idea one step.farther, the LGMXST variable is defined on
the assumption that a problem may be as difficult as its longest
srurce.

'The variable LON= is the length variable that reflects
the "distance" between the first and last numeral in the problem
statement. The rationale for this definition rests or the assump-
tion that it may be more difficult to solve a problem when the
data are spread far apart, since in this situation it is nore
likely that the problem solver will lose track of how the data
fit together. This definition is appealing in terms of the
verbal processing model, bec; kaR 'it refers directly to the
reorganization process in its.rationale.

Finally, the average word length variable AVG= is intended
to'be indicative of overall word comprehension. The ability to
recycle and process woKds with many letters develops gradually
as the child matures; thus, this variable may affect problem
difficulty, particularly for young children, by placing greater
strain on the recall/comprehension process. For older children
and adults the effect is likely to be much less pronouncedLor
in some cases negligible.

To summarize, the verbal processing model (Figure 2.1) s4gests
the following hypotheses with respect to length variables; (a)

variables describing the number of words and/or symbols affect

problem difficulty due to the increased load on short-term memory;

V%
t
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(b) variables describing average word length or.vocabulary difficulty
affect problem difficulty due to the increased load on long-term
memory and comprehension; (c),variables describing the number of-
sentences and the degree of separation of data within the problem
affect problem difficulty due to the increased load on the reorgan-
ization of information; while (d) variables describing the number
of letters or characters are inappropriate, being aisociated with
problem difficulty only by virtue' of their correlation with the
length variables.

w;

Grammatical StrUcture Variables

Although problem length has been shawl to be an important para-
meter in the study of problem difficulty, length variables rre the
most superficial of the syntax variables. We now turn our attention
to syntax variables which reflect the grammatical complexity of prob-
lem statements.

Variables describing the numbers and types of clauses and phrases
are included in Table 2.3. In terms of the verbal processing model,
variables such as the number of main clauses (MAIMI.), the number of
gubordinate clauses (SUBCL), and the number of prepositional phrases
!yREPHR) would principally affect the process of reorganization of
information. Main clauses, containing subject and verb, represent
the main idea or main action sequences in the problem statement.
Subordinate clauses represent ideas which are secondary in a gram-
matical sense, although not necessarily in a mathematical sense.
The problem solver is hypothesized to process smaller "units" such
as words into short-term memory and reconstruct larger "units"
through retanization. With this interpretation, the fact that
variables , 1 as MAINCL and SUBCL do not enter nearly as importantly
as LENGTH (see Table 2.4) into the regression equation seems to imply
that the increased difficulty of longer problem statements results
from greater load on short-term memory, rather than from greater need
for the reorganization of information. It should also be noted that
an increase in the number of clauses may be associated with increased
mathematical-complexity, which is not a syntax variable but will
obviously affect problem difficulty.

The following two problems, at two different levels of diffi-
culty, illustrate this last point.

2.8 ( The Easter Bunny hid 20 dozen eggs ) but ( the
children could only find 20 of thew. ) (How many
eggs were left? )

2.9 ( Larry Bonecrusher. weighed 420 pounds. ) (He ate
25 pounds of chocolates. ) If (( he gained 8 pounds, ))
(by what percent did he increase his body weight? )
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rh the above examples, single parentheses indicate main,clauses,
double parentheses indicate subordinate clauses, and prepositional
phrases are underlined. The counts for these two prdblems are

shown below.

Variable Problem 2.8 Problem 2.9

MAINCL 3 3

SUBCL 0 1

WDMAIN (number of words in 20 22

the main clauses)

SUBLEN (number of words in 0 4

sub. clauses)

CLAUSE (total number of clauses) 3 4

PREPHR 1

The variable counts above can also be used to generate other
variables, particularly those involving ratios. For example, AVGCLS
(average main clause length) can be computed, by taking the ratio of
WDMAIN to MAINCL; i.e., AVGCLS 20/3 7 for Problem 2.8 and 22/3
7 for Problem 2.9.

While the values of the variables for Problem 2.9 are higher
than for Problem 2.8, the greater difficulty of Problem 2.9 can be
accounted for without reference to these variables. For example,
Problem 2.9 contains irrelevant numerical,information and utilizes
the concept of percent, while Problem 2.8 does not:

Parts of speech variablea ate also defined in Table 2.3. As

the problem solver reads through the problem statement, the mean-
ings of nouns and verbs must be recalled fram long-term memory,
and those that appear important in reaching a solution must be
retained in short-term memory. Adjectives and adverbs may provide
the context to help the problem solver, decide which nouns and verbs
are important; however, it is often the case that they ire distrac-
tors which do not supply useful information, but merely increase
the length of the problem an increase its Complexity. Consider
the following two problems:

2.10 The brown horsi'can run 5 miles per hour faster
than the black horse, which can run 10 miles per
hour faster than the old grey mare. If the old
grey mare can run at 10 miles per hour, how fast
car the brown horse run?

2.11 The large, green spotted dragon ran quickly up to
the castle and demanded that the fair damsel be
given to him to eat. Sir Dull, the boring Knight,
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killed five of his Last eleven dragons, white Sir
Oscar kaled seven'of his Last 15 dragons. Based
on his record,-which knight has the greater prob-
ability of killing the large agreen dragon?

In Problem 2.10, the adjectives "brown," "black,"'and "grey" are
necessary to distinguish the horses from each other. While the adjec-
tive "old" is not necessary it does help to reinforce the fact that
the grey mare is the slowest. The adverb "faster" helps describe the
action of the problem and provides an item-of information essential
to the problem's structure. Again it is apparent that there is con-
siderable interaction among the task variable categories of syntax,
context,, ,ad structure. In Problem 2.11, the adjectives and adverbs
"large," "green," "spotted," "fair," "boring," and "quickly" provide
no useful,information and place greater strain on short-term memory
unnecessarily. These adjectives and adverbs do not interact with
the problem structure. They may, however, serve a useful purpose
in stimulating the problem solver's interest in the problem (see
Chapter III).

In view of the two' situations illustrated in the above,problems,
it is difficult even to decide in which direction the correlation
between the variables ADVERBS and ADJECTIVES and probleui difficulty
will be. Here again, we find the major limitations of the linear
regression model.

Segalla (1973) attempted to quantify a number of somewhat sub-
jective aspects of problem statements. To measure the "richness"
of a problem statement, he hypothesized that a high NOUN TO ADJECTIVE
RATIO would be a characteristic of,more difficult problems, since
the problem statement would tend to be barren of information. How-
ever, it is just as possible that a problem with a low NOUN TO

ADJECTIVE RATIO would contain many unnecessary descriptors which
would function as distractors, making the problem more difficult.
This variable therefore seems ihappropriate to a verbal processing
model.

A particularly interesting variable studied by Segalla is the
PRONOUN TO NOUN-RATIO. This variable is a measure of the indirect-
ness of a problem. In statements which contain many pronouns but
few nouns, it is difficult to remember which nouns are referred to
by which pronouns. This places strain on shOrt-term memory, slowing
down verbal processing and necessitating rereading. More movement
among the three processes in Figure 2.1 may be necessary. Problem

-2.2, for example, has a high "indirectness" index.

Thus far, we have considered syntax variables that describe
only the surface structure of sentences. Howevér,-Ruddell (1964)
noted that variables which employ element counts, such as the
LENGTH variable or any of the "parts of speech" variables, have
been successful in accounting for only 26 to 51 percent of the
variance in reading comprehension scores. It is apparent that
a syntax variable which reflects more of the organizational
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comPlexity of language structure might account for a significazjt portion
of the variance in problem difficulty. /n 1970, Loftus defSa such a
variable, based on a measure Of "depth" proposed by Yngve (1960). In
the Yngve model, each sentence is broken down into its constituent parts
by a binary rewrite rule. In the resulting "phrase structure.tree dia-
gram," i number is assigned to each word, reflecting the level of
"embeddedness" of the word in.the sentence. These "Yligve numbers" 4Ire
determined by the number of left branches leading to each word in the'
sentence. Figure 2.2 illustrates the "phrase structure tree diagram"

4

for the sentence "The best students are always very punctual."

Yngve hypothesizes that this concept of depth is a measure of the
number of constituents of che sentence that the reader must keep in
short-term memory when considering each word. In this particular
example, the reader must recall that "best" preceded the noun
"students" AO the verb phrase "are always very punctual", and therefore
it receive/it depth pf "2". However, after reading the word "best" the
reader will usually anticipate a noun and a predicate to follow, since
this is a familiar pattern in English language structure. The aepths
of the words "students" and "are" are"therefore not as great as the .

depth for "best."

The validity of the use of Yngve's measure has been supported in
several studies, and Yngve himself was successful in applying his mndel
to algebraic sentences. However, his results Pere not nearly as valid
when applied to ordinary sentences in English. Rohrman (1968) and
Perfetti (1969) noted difficulties associated with coding the depth
of a sentence, and the results of their investigations do not support
the Yngve hypothesis. One projzlem is that, for some sentences, more
than one structure tree may.biossible, resulting in a different mean
depth for each. Since there does not exist an explicit set of rules
for determining the numbers assigned to the words of a sentence, the
question of reliability becomes significant.

Although the difficulties cited above imply that the Yngve measure
of depth may be of questionable value in recall tasks, Loftus (1970)
and Segalla (1973) attempted to show that the Yngve hypothesis may
have same value in determining the relationship of syntax structure
to word problem difficulty. In each of these studies, the investi-
gators overcame the problems of ambiguous sentences and inter-
experimenter reliability by choosing sentences carefully and compar-
ing their "sentence trees" with those obtained by experts in psycho-
linguistics. In each case, the results for each problem correlated
well with those obtained by the original researchers.

The syntax variable DEPTH can be defined as it was in the Loftus
study by the following procedure: (1) compute the mean of the Yngve
numbers for each sentence in the problem; and (2) the highest value
of this set of Yngve "means" is taken as a measure of syntactic com-
plexity, DEPTH, of the problem. The procedure for computing this
variable is illustrated with the following example. The reader is
invited to quantify the DEPTH variable for this problem and compare
the results with those obtained by Loftus.

4..
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Figure 2.2 Computation of ,Irngve ftmbers
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2.22 Jim has 40 bottles. Ken has 30 botttes. They
have how many bottles together?

In the first sehtence, the Yngve numbers are 1, 1, 1, 0, yielding a
mean of .75. The third sentence is characterized by the Yngve numbers
1, 1, 3, 2, 1, 0, with a.mean of 1.33. The number 1.33 Is therefore
taken as the measure of DEPTH for thl.s problem.

It is clear from this procedure that the definition of the DEPTH
variable it; based on the assumption that a problem is as complex as
its most complex sentence. This notion of "embeddedness" is essen-
tially based on shart-term memory. It would seem, however, that DEPTH
represents only one dimension of grammatical complexity, since it does
not reflect the types of words present in the problem statement.

Another technique for representing syntactic complexity has been
suggested by Botel, Dawkins, and Granowski (1973). Their formula for
computing syntactic complexity is based on a theory of transforma-
tional grammar in which complex sentences are considered to be
derived from changing and combining underlying structures such as
simple sentences. Like the Yngve measure, the Botel, Dawkins, and
Granawski formula yields a numerical coefficient for each Sentence,
but the latter formula is more reliable and Inclusive. Methods for
computing the syntactic complexity coefficient and implications for
researchers are discussed in detail by Goldin and Caldwell in Chapter
VI.

To summarize, the verbal processing model suggests the following
hypotheses with respect to grammatical structure variables: (a)

variables describing the number of clauses and prepositional phrases
affect problem difficulty due to the increased load on the reorgani-
zation of information; (b) the effects of different parts of speech
depend on whether the information is essential or inessential to the
problem solution and thus no clear effect is anticipated; and (c)
variables describing syntactic complexity (e.g., DEPTH) affect prob-
lem difficulty due to the increased load in short-term memory.

Variables ReZated to Numerals and Mathematical SymboZs

It is obvious that in mathematical problem solving the numbers
and symbols contained in the problem statement are of great impor-
tance, since these are the data that learners must manipulate to
reach a solution. What is not so obvious is the relationship, if
any, of the syntax of the numbers and symbols to problem difficulty.
A step-wise linear regression analysis' of the effects of the form
of numbers and symbols has not been done in any of the major studies
that have employed this technique.

Syntax variables describing the number of digits, numerals and
symbols have already been considered as components of various length
variables. The question remains as to which form of these variables

7s
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is likely to most affect problem difficulty based on Figure 2.1.
Most problem solvers are exposed to numbers in numeral form much
more often than in English form. In the encoding stage of verbal
processing, numerals (and not English,words) are placed together
in mathematical sentences. It would seem therefore that word prob-
lems which contain numbers in numeral form may require less process-
ing, and are more readily recognizable. Numbers in word form must
be recalled and translated into numerals before they can be used in
the later stages of the problemsolving process.

The relationship of symbol form to problem difficulty may like-
wise Oepend on the extent to which the problem solver is familiar
with the symbols used. If a particular symbol is new to the problem
solver, recall of its meaning may take longer and storage in short-
term memory may be slower than if the symbol had appeared in the
problem in written form. In actual practice, however, the symbols
used in linear regression studies (such as $ and %) have been
familiar to the problem solvers.

Several number and symbol form variables can be defined by taking
combinations of the variables in Table 2.6 (Tripp, 1972). For example,
consider the following problem:

2.13 At a sale, three children received a 10% discount
on the purchase of a gift for their teacher. If
the gift cost the children 5 dollars, how much
was its original price?

The word "three" is a number that appears in word form, so the count
for NURD is 1. "10" and "5" are numbers that appear in the problem
statement in numeral form, so the count for WORAL is 2. The symbol

was used in the problem statement to replace the word "percent,"
yielding a WOSBI, count of 1. Conversely, "dollars" is a word in the
problem statement that replaces the symbol "$", so MED receives a
count of 1.

The definitions of these four variables indicate that NURD and
WORAL, as do WOSBL and SYMRD, measure the same factors but in
opposite directions.

To summarize, the verbal processing model suggests that variables
describing the form of numerals and symbols will affect problem diffi-
culty based on the familiarity of the form to the problem solver, and
the similarity of the form to the form required for a mathematical
equation.
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Table 2.6 Variance Deeorlbing Number and SymboZ Forms

1. NURD: A count of 1 for each number in word form
which must be used to solve the problem or
serving as a distractor.

2. WORAL: A count of 1 for each number in numeral form.

3. WOgn: A count of 1 for each word in symbolic form

4. SYMRD: A count of 1 for each symbol in word form.
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Variables Describing the Qi4estion Sentence

An important part of any problem statement is the sentence or
phrase that contains the question to be answered. If the problem
solver does not understand the question, the problem will be mean-
ingless. Teachers have noted that students often find the correct
answer to the wrong problem; that is, their calculations are correct
but their answer is not what was asked for in the problem statement.
Syntax variables describing the form, length, and position of the
question sentence or phrase have been defined In order to observe
the effects on problem difficulty of variations in question sentence.
One kind of variable is the length of the question sentence. From
the standpoint of the verbal processing model, there is no obvious
reason to treat the length of the question sentence differently from
any other sentence length.

A few researchers have suggested that certain types of problems
may be more difficult if the question sentence contains one or more
numerals than if no numerals are present in that sentence. It is
possible that the presence of numerals would distract the problem
solver from identifying the goal in the question sentence, encour-
aging instead the immediate processing of thii information.

A third type of variable in this category relating to the organ-
ization of information is that of sequence. In problems which con-
tain several sentences, difficulty may be influenced by whether the
question sentence appears first or last in the problem statement.
Similarly, for one-sentence problems the question may be Asked before
or after the data are presented. It is not clear whether the question
functions as an advanced organizer when presented in the beginning of
a problem. If it does, it may help the problem solver determine the
relevance of data and assist in storage in short-term memory and in
reorganization. It is also possible, however, that the "distance"
of the question from the end of the problem may cause the problem
solver to lose sight of the exact nature of the task.

The previous discussion suggests the definitions in Table 2.7.

The reader is invited to consider the following examples with
respect to QUENL and QUESQ. For determining QUNLC, we shall consider the
entire problem as the question sentence. The counts for the above
variables will change if the variables are defined with respect to
the "question phrase" rather than the "question sentence."

2.14 How many more dollars will John need if a bike costa
$50 and he has already saved $35?

2.15 John has $35. He wants to buy a bike that costs $50.
How many more dollars does he need?
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Table 2.7 Variables Describing the Question Sentence

1. NUMQS: A count of 1 for each word in the question
sentence (a similar variable can be defined
for the number of words in the "question
phrase" for single sentence problems.

2. QUENL: A count of I if the question sentence (or
phrase) contains a numeral. A count of 0
otherwise.

QUNLC: Another variable, QUNLC, can also be defined,
with a count of 1 for each numeral in the
question sentence.

3. QUESQ: A count of 1 if the question sentence (or
phrase) appears before the presentation of
the data. A count of 0 if the question
sentence (or phrase) appears at the end of
the problem statement (or follows the pre-
sententation of the data).
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2.16 If a block of wood is B inches Long by 7 inches wide
by 5 inches thick, what is its surface area in square
inches?

2.17 In haw many years will Ws. Brown be 3 times as old
as her daughterl Ws. Brown was 20 on her daughter's
second birthday.

Problem QUENL QUNLC QUER'

2. 14 1 2 I

2. 15 0 0 0

2.16 1 3 0

2. 17 1 1 1

To summarize, from the standpoint of verbal processing it would
be expected that NUMQS should have no particular effect that has not
been already incorporated under length variables, and the QUENL and
QUESQ may affect the problem difficulty by making easier or more
difficult the process of reorganization of information.

Sequence Variables

The sequencing of information in problem statements has long
been known to contribute to problem difficulty. Problems with data
presented in the same order as they will be used to'reach a solution
tend to be easier than those in which the data are out of order.
Data in tile proper order facilitate understanding of the relation-
ships in the problem statement and allow the problem solver to con-
struct relational mathematical expressions with minimum reorganiza-
tion.

In recent years, a number of researchers have used some form
of ORDER variable in linear regression studies (Loftus, 1970;
Segalla, 1973; Barnett, 1974). This variable has been defined both
as a dichotomous variable and as a whole-number-valued variable,
as in Table 2.8.

Brennan (1972) has suggested a different version of an ORDER
variable. The ORDER3 variable in Table 2.8 reflects the position
of the question statement with respect to the data interval. This
variable is similar to question sentence variables discussed pre-
viously.

The following examples illustrate the three ORDER variables.

2.18 A businesswoman was getting 23 miles per gallon of
gasoline. Changing her spark plugs reduced thisby
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Table 2.8 Sequence Variables

ORDER': A count of 0 is given if the numbers in the
statement of the problem appear in exactly
the same order as they are needed for solving
the problem, and a count of I otherwise.

ORDER2: The minimum number of permutations required
to change fhe sequence of the numbers in the
statement of the problem to the sequence
customarily required to solve the problem.

ORDER3: A count of 1 is given if the data interval
is interrupted by the statement of the
question. A count of 0 is given if the
data interval is not interrupted by the
question statement. (The data interval has
its end points on the first and last numerals.)



10 percent. However., a carburetor tun9-4p increased
that by 5 percent. Phat was her new mileage?

2.19 A grocer bought 1? dozen pears for $4.85. If 5 dozon'
spoiled, at what price per dozen must he sell the
remaining pears to make a profit equal to 3/5 of the
total cost?

Problen . ORDER' ORDER2 ORDER3

2.18

2.19

0

1

0

2

0

3.

Note that in Problem 2.19 the numeral $4.65 must be moved from the
second position of the four items of information (17, $4.65, 5, 3/5)
to the fourth position, since, it is used lastin the problem. There-
fore, the count for the ORDER2 variable is 2.

Order variables are not exclusively syntax variables, since
they involve comparison of the sequencing of information in the-
problem statement with the ideal sequence from.the standpoint of
mathematical structure. They may affect the reorganization process
in the decoding stage, but their effects may also be due to effects
of problem structure on problem solving, thus extending beyond the
scope of the translation stage.

3. The Effects of Syntax on Problem-Solving Processes_:
Recommendations for Research

The effects of variation of problem syntax on the processes used
by problem solvers haye been studied very little (an exception is the
study by Hayes and SimonI975, describing effects of syntax and semantici

on the representations cr6ated by subjects). Given two problems with
the same mathematical structure, let us hypothesize about how varia-
tions within each of the categories of syntax variables might affect
problem-solving processes. In a previous section, the role.of
variables of length was discussed with respect to the verbal pro-
cessing model. The point was made that lengthy problems can place
stress on short-term memory in the decoding stage. We might there-
fore expect problem solvers to depend less on short-term,memory in
lengthy problems than in short problems. It seems reasonable to
hypothesize that the changes6in processes used might include: the

increased use of paper-and-pencil techniques to,record information;
the greater use of diagrams; tables, and/or graphs to help organize
the data; and, perhaps, the increased use of algebraic labels for
unknown quantities. Reading patterns might vary following an initial
reading of the problem statement (such as a greater tendency to
reread part or all of the problem, or increased skimming of the
problem statement to pick up individual items of information), It

might be particularly interesting to investigate the effects of the
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appearance of a lengthy problem on the processes used to solve it.
That is, do the processes used to solve a lengthier problem change
due to the actually greater amount of language processing necessary,
or does the mere appearance of long problem influence how the prob-
lem solver approaches.it?

Varying the number of sent nces (the SENT variable) while keeping
the content, context, and math tical, structure constant might also,
produce differences in the prate see used to solve word problems,
sinte the infOrmation in thei pro lem statement would be contained
in different size organizational units. For example, a problem with
one sentence might lead the prob em solver to construct a single
equation incorporating all the'r levant data. A structurally similar
problem with several sentences (e ch containing an action sequence or
information item) might lead the roblem solver to construct several
small equations or mathematical r lationships.before Combining them
into a single, all-enc6mpassing e uation.

Many of the above comments on the possible relationship of varia-
tions in length to solution proces es apply to grammatical structure
variables as well. Faced with a p oblem having complex grammatical
struc.mre, the problem.solver is.1 kely to show'increased use of the
same aids,to short-term memory as i the case of lengthy problems.
However, a more interesting questioh to ask is whether there is a
relationship of the number or form 0 the equations developed by the
problem solver tc the amount of.action %as measured by, say, the
VERBS variable), or to any of the other grammatical structure varia-
bles defined in Table 2.3.

The point was made earlier that the-pgsition of the question in
a problem task may influence the stor ge of data in short-term memory.
If the appearance of the question sen ence at the beginning of a problem
statement acts as an advanced organiz r, this nay be reflected in the
form of mathematical sentences used b the problem sllver. Recent develop-
meets in instruments of protocol'analy is could be of great value in de-
termining the relationship of the posi ion of the question to the form of
equation and method of solution employ d.

Speculating on possible changes in process as a result of changes
In number and symbol formats is somewha difficult. 'If theformats of
these two aspects of a problet, statemen are unfamiliar to the problem
solver, it is possible that he or she wi.I.l write information expressed
in one form in a more familiar form. Fct example, if the numbers are
presented in.a problem task in English farm, the problem solver may
write them in numeral form while reading through the problem statement,
as an aid to short-term mekory.

c,
Changes in the sequence of data are likely to influence the

sequence type or length of the equations develOped by the problem
solver. Information obtained by inVestigations'of this relationship
may lead to a better understanding of the nature'pf the reorganization
'substage of the verbal processing phase. \
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In order to investigate the effects of syntax on problem-solving
processes as suggested in this section, a reliable methbd of record-
ing and classifying such processes is evidently needed. Chapter
VIII.B of this book may be an important step in developing Such a
method.

4. Conclusions

In the previous discussion, an attempt has been made to (1)
establish the importance of syntax variables as a special class of
task variables related to verbal problem solving in mathematics; (2)
examine the current state of knowledge based on linear regression in
syntax variable research; (3) suggest a verbal processing model
compatible with the general problem-solving model shown in Chapter
I, which may help explain the role of syntax in the verbal processing
phase; (4) suggest some categories and subcategories of syntax varia-
bles for future research; and (5) propose some possible extensions of
syntax variables research to look at problem-solving processes as the
dependent variables.

The identification of the five major categories of-syntax varia-
bles (Length, Grammatical Structure, Numerals and Symbols, Queption
Sentence, And Sequence) is based on the research to date, particularly
those studies that have employed the linear regression model. While
this technique has made a valuable contribution to the identification
of specific syntax variables that may contribute to verbal problem
difficulty, it may be time to progress beyond it.

A purpose of this book is to demonstrate that describing task
vaiiables by means of various categories is a useful procedure that
should help researchers gain information about the interrelationships
of different attributes of problem tasks. The relationship of specific
syntax variables to the other characteristics of verbal problem tasks
discussed in the following chapters needs intensive study across age
and ability groups. Of particular importance are studies that attempt
to determine directly the role of syntax variables in the decdding pro-
cess at the first stages of problem solving.

A commitment to the development of new research and methodologi-
cal paradigms on the part of researchers is of paramount importance.
In the opinion of this author, significant advancement in the field
of problem-solving research will only be possible if results can be
replicated and extended by coordinated series of investigations.
Such efforts imply-a commitment to dommen definitions, notation,
shared problem sets, and similar subject populations. The various
components of the verbal processing model suggested in Figure 2.1
may provide an organizational framework for a portion of these
efforts..



Content and Context Variables in Problem Tasks

by

Norman Webb
University of Wisconsin
Madison, Wisconsin

One purpose of this chapter is to identify different dimensions
across which the content and context of a task can vary. The cate-
gorization scheme is designed to be used by teachers and curriculum
specialists to analyze the range of problem-solving experiences
children are receiving, or should be receiving, in school.

A second purpose is to clarify the role which content and con-
text variables play in problem-solving research. It is essential
that content and context variables be well defined to increase the
validity and the generalizability of research findings. Small varia-
tions in the content or context of a task can result in large
variations in the solution process, and consequently in the findings
of a study. The categorization scheme for content and context varia-
bles should help researchers in designing research, selecting problems,
and interpreting their findings. Brownell and Stretch (1931) caution,

...the act of solving verbal problems in arithmEtic is
exceedingly complicated and investigations which
oversimplify the process and attempt to measure a single
aspect of it without regard for other aspects are certain
to secure only partially valid results and to misrepre-
sent the true situation (p. 74).

The content of a problem is the mathematical substance of the task.
Tne four main subdivisions of content variables to be discussed in
ehis chapter-are: (1) variables describing the mathematical topic,
(2) variable3 describing the field of application, (3) variables describ-
ing the semantic content, and (4) variables describing the problem
elements. Here "semantic content" refers to the meanings of critical
voids or phrases in the problem statement, such as keywords or technical
mathematical vocabulary. "Problem elements" are phrases in the problem
statement which contain essential items of information such as givens,
allowed operations, and goals.

Where content refers to "substance of a problem," the context
refers to tile form of the problem statement. "Form" is interpreted
very generally to include: (1) variables describing the problem
embodiment or representation, (2) variables describing the verbal
context or setting, and (3) variables describing the information
format.

-69-
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Certain boundaries have been set in this chapter between content/
context variables and other categories of task variables. .Both syntax
variables and content/context variables describe the problem statement.
Content and context variables tend to be classificatory in natüre, .

and describe the types of words, elements, operations, and applica-
tions.of the task. Syntax variables tend to be quantitative measures
describing the problem statement. Content and context variables
deocribe surface characteristici that,can be observed directly from
the problem statem'ent or its immediate surroundings. Structure varia-
bles describe the underlying mathematical characteristics, of the tasks,
in contrast td its surface characteristics.

In developing the categorization of task variables, we must take
account of certain difficulties. Often a very fine distinction deter-
mines the-placing of a variable in one or another category. Some
variables which we consider to be context variables, and thus intrin-
sic to the task, are very similar to some situation variables which
are external to the task. Even among the categories of task variables,
ambiguity can arise. For example, we shall consider "problem type" as a
content vari4ble. However, this is distinguished from certain struc-
ture variables by a thin line. If the "type" of the problem can be
identified from the problem statements without mathematical processing,
then the problem type is a content variable. However, if the problem
"type" is identifiable only after beginning to solve the problem mathe-
matically, then it is a structure variable. The point is that any
categorization scheme for task variables is somewhat arbitrary: its

value comes from the extent to which it helps identify possible con-
founding factors and provides a means of communication.

The next section reviews some research that is related to content
and context variables. Sections 2 and 3 delineate the proposed class-
ification scheme for these variables.

1. Review of Research Related to Content and Context Variables

In this section, research will be reviewed
major questions that have been asked concerning
task variables.

which illustrates the
context and content

Content variables have been investigated both directly and
indirectly, depending upon the purpose of the study. "Mathematical
topic" has not often been regarded as a variable to be manipulated.
For example, Lucas (1972) investigated the teaching of problem solving
using calculus as the content and Kantowski (1974) has worked with
high school students using geometry. In these studies the mathemati-
cal topic was fixed a priori and problem-solving behavior studied
within the topic area.

Studies that have considered the generalization of heastic pro-
cesses across tasks have sometimes used "mathematical topic" as an
independent variable to study the effects of instruction. Wilson



(1967) gave high school students instruction in heuristic.processes
on two different kinds of tasks, algebra and logic; he then tested
their ability to solve problems on these topics, their use of
different levels of strategy on each task, and their ability to
solve a transfer task in geometry., 'He concluded that the different
levels of heuristic processes may coqilement each other, since
superior problem-solving performance.resulted when different levels
of heuristic processes were demonstrated in the two training tasks.
Heuristic processes demonstrated on one task tended to be used on
successive tasks. A similar type of study was done by Smith (1973)
to investigate the effect of giving advice on task-specific heuris-
tic processes as opposed to general heuristic processes. He gave
college students three programmed booklets to study, each on a
different mathematical topic: finite geometry, Boolean algebra,
and symbolic logic. The task-specific group did beiter on the logic
and Boolean algebra tasks. The general heuristic process group did
not solve more transfer problems, and did not solve them faster.

Both of these studies investigated a fundamental pedagogical
issue: teaching specific means of solving problems in each.content
area vs. teaching general means of solving problems that can be ap-
plied to problems from different content areas.

Krutetskii (1976) developed problem sets that varied problem
type in order to study the ability of children to generalize. He found
that capable pupils tended to generalize the problems before solving
them, on the basis of a.grasp of the general features of the structure
of the problems. Most capable pupils were able to recall the type and
the general character of the operations of a problem they had solved,
but not the problem's specific data or numbers. Less capable pupils
usually recalled only specific data or numbers.

In most of Krutetskii's series, problems from more than one
mathematical topic were used. The topics included arithmetic,
algebraic, geometric, logical, and general mathematics problems.
The names of the problem series that varied content or context
variables are as follows (see Table 5.3, Chapter V for more detail):

- Problems with an unstated question. ,
- Problems with incomplete information
- Problems with surplus information
- Problems with interpenetrating elements
- Systems of problems of a single type
- Systems of problems of,different types
- Problems with terms that are hard to remember

The first 'three series were used to study the characteristics of infor-
mation-gathering by mathematically capablepupils. Each of these series
had a high loading on a single factor labeled "formalized perception of
mathematical material."

8 7
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Using some of the same problems as Krutetskii, Silver (1978)
examined student perceptions of "relatedness" among mathematical
word problems. He administered a card-sorting task to one group of
eighth-grade students andIater to a second group. The Card-sorting
task consisted of 24 verbal probrems varied systematically along rwo
dimensions, mathematical structure and contextual details. Students
were instrqcted to form groups of problems that they judged tosbe
"mathematically related" and to explain their basis for categoriza-
tion. The students appeared to use four general problem similarity
dimensions--(a) mathematical structure, (b) contextual details, (c)
question form, and (d) pseudostructure. The latter dimension
referred to associations among probIems based on the presence of a
common measurable quantity, such as age, weight, or time. Silver's
four dimensions are similar to those identified by Chartoff (1976)
in administering a card-sorting task of algebra verbal problems to
500 students ranging from seventh graders to college freshmen.
Chartoff also identified four dimensions,(a) how the problems are
solved, (b) the contextual setting, (c) comparison with a generic
problem of the same type, and (d) the question posed by the problem.
Chartoff's third dimension corresponds to Silver's "pseudostructure."

The population used by Silver was composed of students in regular
eighth-grade classes, in contrast to the very capable students predom-
inantly described by Krutetskii. However, the results are very similar
in that the structure dimension tended to dominate students' percep-
tions of.problem relasedness. On the other hand, it was not,uncommon
for students in the Oklver study to assoCiate problems using the pseudo-
structure dimensions. Further, a negative relationship was found
between mathematical ability and the tendency to sisociate problems
according to their contextual details.

The distinction between "typing" problems by their mathematical
structure and bY their pseudostructure needs to be developed further.
In general, Krutetskii used the term "problem type" to group problems
having similar mathematical structures. In our'scheme of analyzing
task variables, such a classification would represent a "structure"
variable rather than a "content" variable. The pseudostructure, as
defined by Silver, refers to the concept of "problem type" as a
content task variable, since the classification of the problem can
be done strictly from the problem statement. Some of the classifi-
cations of problem type by pseudostructure include "age" problems,
"work" problems and "coin"'problems, Much of the problem-solving
experience students receive in school involves working problems
grouped by problem type.

During a part of the Mathematical Problem Solving Project at
Indiana University,'elementary-age studenti were asked to select
problems they would like to solve. The criteria used to select the
problems were observed to .be very superficial, such as the name of
the person mentioned in the problem or the length of the problem
statement. Rarely did students select problems on the basis of
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problem complexity or difficulty level. When given a choice between
problems stated with a few words and a picture or those stated only
with words, students selected the former more often than the latter.
For example, a problem like 3.1 was chosen more often than 3.2. There
are other factors involved, but one suspects that the differences in
semantic content are among the.reasons the students found 3.2 to be
more interesting and require less outside help.

3.1 Use each number from 1 to 8 once to fill in the small
squares so that no two numbers that fonow in order
(such as 4 and 5) are in squares that touch.

3.2 A bowl has 24 pieces offruit. Some are oranges and
some are grapefruit. It has twice as many oranges as
grapefruit. Row many oranges are .4n the bowl?

Studies of the "semantic content" of mathemattcal problems have
examined mathematical vocabulary and the use of "key words," Kane
(1968, 1970) argues strongly that mathematical English and ordinary
English differ on at least four factors7-the level of redundancy of
words, the unique denotation of names of mathematical objects, the
importance of adjectives, and the flexibility of graMMar and syntax.
He questions the validity of the use of standard readability formulas
to assess the readability of mathematics textbooks and problems.

Nesher and Tel:bal (1975) identify three ways that research studies
have dealt with verbal cues and their relationship to attaining solu-
tions of arithmetic problems. One group of studies emphasizes the need
for training in specialized mathematics vocabulary (Dahmus, 1970; Lyda
and Duncan, 1967; Vanderlinde, 1964; Willmon, 1971). Other studies
(Jerman and Rees, 1972; Loftus, 1970) view verbal cues as a factor in
determining the relative difficulty of verbal arithmetic problem
solving. Following this line of investigation, a distinction is made
between verbal cues, words that cue for specific mathematical opera-
tions, and distractors or potential verbal cues which are not in fact
cues for operations. In a third approach, Paige and Simon (1966)
raise the question of exactly how verbal cues affect the transition
from the verbal formulation to a mathematical expression.
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Eadh of the three types of studies is concerned with how the task
variable of "key words" may affect problem-solving performance. How-
ever, research findings do not always substantiate the importance'of
key words, particularly in relation to problem difficulty. Nesher and
Teubal found that, for first graders, key words actually deterred'fi
ing the correct operation rather than facilitating the process. 0 the
three groups of studies, they felt the third group held the most om-
ise, where verbal cues are studied as they affect the transition om
a verbal formulation to a mathematical expression. Loftus kept tr k
of verbal cues in the word problems such as "and" for addition, "le
or a comparative for subtraction, and "each" for multiplication. She
found that such cues did not enter as a significant regression effect
once other variables with larger multiple correlates were entered into
the equation. These other variables, in order of importance, were:
operations, sequence, length, depth, and conversion.

More studies have investigated context variables than content
variables. The majority of these studies have considered the effects
of different settings on problem difficulty or problem-solving perfor-
mance. In general the findings are inconclusive: the settingof a
problem makes a difference in some studies, while in others the
variation of setting has no effect. Most of the studies have been
restricted to standard word problems similar to those found in text-
books. Little is known about the variation of context on the diffi-
culty of nonroutine problems.

A classic study on the effects of unfamiliar settings on problem
solving was done by Brownell and Stretch (1931). More important than
the findings of this study is the approach taken by.the researchers.
They sought not only to determine what the effects were, but also to
understand why and how they occurred. The undertaking was to study
whether the success of children in solving arithmetic problems is
conditioned by the familiarity or lack of familiarity in the settings
described in the problems. In particular, it was asked whether
unfamiliarity of setting causes a loss of efficiency in the under-
standing of the arithmetic involved in the problem, in computation,
or in both.

"Familiar" was defined as included in immediate personal exper-
ience, as opposed to experiences secured through pictures and reading.
Brownell 7-d Stretch took the position that there may be degrees of
unfamiliarity and used four varieties of the same problem with
successive versions designed to make the setting more "unfamiliar."
Thu first version was designed to be a situation from the students'
immediate experience. The setting of the fourth version was a
situation that was probably unknown to the students, and included
some nonsense terms.

An arithmetic problem was assumed to have five separate featu'res:

(1) certain numbers, (2) one or more operations, (3) one or more verbal
clues to the operations(s) ("How many . . . together"), (4) a setting or
situation, and (5) the language (words, sentence structure) necessary
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to bind together the preceding four parts. The first three features
are content variables, "setting" is a context variable, and sentence
structure falls under the heading of "syntax variables" (see Chapter
11). In studying the setting of problems, Brownell and Stretch kept
the other four variables constant. An example of a problem and its
variations is the following:

3.3 There are 34 Boy Scouts in Dick's troop. Each scout
is to bring 3 of his old toys to school to give to
poor children in the town. The Scout Master says
that altogether 92 toys have been brought. How many
are there yet to be brought? (47 words)

Soldiers grooming cavalry horses.
(3 x 34) - 91 (47 words)

Refining plant; tank cars of oil in the yards.
(3 x 34) - 91 (47 words)

Hindu village, with bimlecks and toros.
(3 x 34) - 91 (47 words)

(Brownell and Stretch, 1931, p. 19)

The tests wer o'stered to fifth-grade students with each child
solving all velsions of each problem. A Latin square design
was used to ensure that the tests were taken in different orders.
The nuMber of children used in the,analyses was 256.

Just by considering the number of problems scored correctly, a
significant increase in difficulty was found as the familiarity of
the problems decreased. Brownell and Stretch examined the data
further to try to explain these results, and found them to be
deceiving. There was little change in the accuracy of computation
as problems became more-unfamiliar. The children's choices of oper-
ations varied considerably across problems having the same number
relationships, even when there were no changes in the familiarity
of the setting. Unfamiliarity of setting is not universal in its
effect on problem solvers. From 65 percent to 80 percent of the
children were unaffected by changes in the familiarity Of settings.
The unfamiliarity of the setting had the most effect on the least
skilled children, in their choice of operations and their computation.
'The final conclusion by.Brownell and Stretch was that problems are not
made unduly difficult for children by unfamiliar settings, except
under a limited set of conditions.

Travers (1967) contrasted "social-economic," "mechanical-
acientific," and "abstract" problem settings, and found only a slight
relationship-between students' preferences and the types of problems
they were successful in solving. Scott and Lighthall (1967) examined
the possible relationship betvPen "higher needs" (e.g., love and
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belongingness) and "liow needs" (e.g., food and shelter) in the settings
of arithmetic problems, and theaackground of students; they found no
statistically significant relationship. Cohen0(1976) investigated
SOoutdoor," computational, and "scientific" settings with.regard to
problem difficulty, by testing over 200 eighth graders. .Results indi-
cated that "area of student interest" alone was not sufficient to
predict the type of problem on which they would be most successful.

Another dimension of context variables is the Presentation of

the tasks, the forms ofA4hich'can be varied considerably in problem-
solving research. Some examples include: (a) oral; (b) pictorial;
(c) with physical equipment and apparatuses (particularly with younger
children); (d) in game forms or as "twenty questions"; and (e) in a
written verbal form, sometimes even on overhead projectors with strict
tine limitations.

In spite of the variety of options, research that has been done
on different forms of task presentations has been predominantly
reStricted to verbal problems, and conflicting results have been
reported. Multiple-choice word problems from the Y and Z population
of NLSMA which were presented with an accurate picture were less
difficult than the same set of problems presented with prose only
Or with a distorted picture (Sherrill, 1970; Webb and Sherrill, 1974).
/These results were not supported in a study by Kulm et al. (1972), who
/ presented 50 tasks on overhead transparencies and used five different
/ stimulus situations: "textbook," "student-generated," "pictorial,"
"textbook and pictorial," and "student-generated and pictoilal." In

this study, students were limited to one minute to read the problem,
followed by three minutes to solve the problem. Students were most
effective on the textbook version of the problems and least effective
on the "textbook and pictorial" version.

Kennedy, Eliot and Krulee (1970) included both number problems
and word problems in their investigation of error patterns in the
problem-solving formulations used by 28 high school juniors. Examples
of a number problem and a word problem as given by these authors are:

3.4 3y-4 4y+8
8 4

3.5 A man is three times as old as his son. Eleven years
from now he will he only tvice as old as his son. How
old is the son at present?

In general the number problems offered little difficulty for the sub-
jects of this study. The word problems, however, were considerably
more difficult for the less-able students. Rosenthal and Resnick
(1971) also found word problems to be more difficult than number
problems in research involving 63 elementary students.
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Another study that looked at varying the form of presentation
used four problem-solving test forms to compare advantaged and disad-
vantaged second and fourth graders (Houtz, 1973). The four forms
varied from "abstract" to three increasingly "concrete" forms. The
abstract form contained written statements of the problems. The pic-
ture book form had drawings representing the problem placed in the
test booklets above the response alternatives. A third form had
slides made of the drawings and used these in depicting the problems.
Finally, the model form included three-dimensional full-color models
of the drawings. The three concrete forms resulted in a higher level
of performance than the abstract form for both the advantaged and the
disadvantaged children. The model form did not result in the highest
level of performance, and appeared to result in a decrease in the
level of performance of the non-white children in the study.

Loftus (1970) investigated "structural variables" that affect
problem-solving difficulty, using word problems with a small group
of disadvantaged sixth-grade students. One variable identified was
how a problem was eMbedded in a set of "like" and "different" prob-
lems. A word problem was found to be more difficult to solve when
it was of a different type from the problem preceding:it. This
variable that Loftus identified as "structural" fits the definition
of a context variable since it relates to how the problem is presented.

This sampling of studies that have investigated content and con-

text variables provides illustrations of the kinds of questions that
can be asked, rather than a definitive description of the effects of
content and context variable manipulation. These studies are repre-
sentative in that no strong results emerge. More studies like that
of Brownell and Stretch are needed, making an effort to understand
not only if there is an effect, but also why there is an effect.

2. The Classification and Definition of Content Variables

The two categories of task variables which refer to the main
essence of mathematical problems are content and structure variables.
Content variables describe the substance of the task, while structure
variables describe the models that represent the solution process of
the task. The analysis of content variables, then, is important
because of their direct link to the mathematical aspects of the tasks.

Table 3.1 provides an overview of the classification of content
variables proposed in this chapter.

Plionem Classification by Mathematical Topic

Our discussion of mathematical topic is divided into two parts:
classification by subject area and classification by problem type.
The subject area of a task is typically a field of mathematics.

9J



-78-

Table 3.1 A Summary of Content Task variab lea

1. Mathematical topic of the task

A. Subject area claSsifications

broad arithmetic
algebra
geometry
analysis
etc.

B. Traditional "problem types"

rate problems
age problems
money problems
mixture problems
etc.

narrow ratio and proportion
binomial theorem
quadratic formula
etc.

These classifications usually imply reference to mathematical
information which may not be explicitly stated in the problem,
such as the quadratic formula, the equation "distance i rate x
time" or the monetary value of coins.

2. Field of application of the task (if relevant)

biology
chemistry
physics
etc,

A problem may require the use of specific mathematical relation-
ships understood to hold within the field of application. For
examplesa physics problem may require application of the law of
conservation of momentum in order to obtain a relevant equation.

3. Semantic coiltent of the problem statement

A: Key words

greater than
reduced by
altogether
etc,

Particular verbal clues often
fic mathematical operations.
misleading.

B. Mathematical vocabulary

average
root of an equation
polynomial
etc.

(but not always) suggest speci-
Verbal clues may 'sometimes be

Technical mathematical terms may appear in the problem whose
interpretation is important for solution.

04



Table 3.1 (continued)

4. Variables describing the problem elements

A. Given information

given conditions or numerical information
conditions implied but not explicitly aVikr&
hints
etc .

B. Goal information

number of required items of goal information
goals implied but not explicitly stated
problems "to find" vs. problems "to prove"
etc.

5. Mathematical equipment available for the task (if applicable)

calculator
compass
protractor
etc.

Os
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Krutetskii chose to use problems representing the five broad subject
areas of arithmetic, algebra, geometry, logic, and general mathe-
matics, Within eaCh of his problem series. he included items
representing different subject areas.- For example, two pioblems
from Krutetskii's series III (problems with surplus information),
representing different subject areas, are given below (the super-
fluous information is underlined):

Arithmetic Test

3.6 In a store, 24 sacks of potatoes weigh,3 kg and 5
kg each, with more in the former ihan in the latter..
The weight of el the 5-kg slake was equal to the '

weight of all the 3-kg sacks. flow much did each
weigh?

Geometry Test

3.7 Given an isoceles triange, with one sthe 2 cm,
another 10 cm, and the third equal to one of the two

given ones. Find the third scale.
(Krutetskii, 1976, pp. 110-111)

The identification of,a broad subject area classification for
many problems is straightforward. The folldwing five tasks are from .

a book of problems for junior and senior high school students; each
has an obvious classification (Hill, 1974).

3.8 Find all reaZ numbers x such that

1/5

3.9 Given a regular tetrahedron, find the ratio of the
volume of the inscribed sphere to that of the cir-
cumscribed sphere.

3.10 Find the number of terminal zeros in the standard
numeral for 100! (100 factorial)

3.11 Fifty tickets numbered consecutively from 1 to 50 are
placed in a jar, and two of them are drawn at random
(without replacement). What is the probability that
the difference of the two numbers drawn is 10 or less?

3.12 Given the equation sin x
'
determine the number

100of solutions.

Hill classified these problems respectively in the domains of
algebra, geometry, number theory, probability, and trigonometry.



The classification of these problems can be obtained by considering
the givens, the possible operations, and the goals that are explicit
in the statement of the problem or assumed. It is not necessary to
solve each problem in order to classify it.

Krutetskii and Hill both used traditional subject areas which
can be found in most standard textbooks to classify the content of
problems. However, these classifications are not the only way to
partition the domain of mathematics. For example, in the Unified
Mathematics Program, the table of contents lists the following
topics: Finite Number Systems, Operational Systems, Mathematical
Mappings, The Integers, Multiplication of Integers, Lattice Points
in a Plane, Sets and Relations, Theory of Numbers, Rational Numbers,
Probability and Statistics, Transformations in a Plane, and Using
Rational Numbers (Fehr, Fey, and Hill, 1972).

A proolem task does not always fall clearly into a single sub-
ject area. The statement of the task may be in general terms, so
that the solution can be derived by using methods from different
mathematical subject areas. Thus a task may be labeled as "arith-
metic" or "algebra" depending upon how the problem is expected to
be solved. In this situation the problem task is categorized as
belonging to a particular subject area based upon the mathematical
structure of the task and what processes are to be used to find the
solution. This distinction is important in co Adering subject area
classification as a content variable rather than a structure variable.
Subject area as a content variable is based upon the problem statement
--the givens, the stated operations, and the goals of the task. For
example, consider Problem 3.13. The subject area classification of
this task is geometry, since the givens are all elements of a figure,
the goal is to find a geometric element in terms of three others, and
the implicit operations and needed properties are mostly within the
domain of geometry. The solution, however, has the appearance of an
algebraic relation.

3.13

Find angle e in terms of angles f, g, and h.

',Webb, 1976)

9 7
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Next consider Problem 3.14:

3.14 A barrel of honey weighs 50 pounds. The same barrel
with kerosene in it weighs 35 pounds. If honey is
tvice as heavy as kerosene, how much does the empty
barrel weigh?

(Webb, 1976)

For those who have studied algebra, the most obvious way to
solve Problem 3.14 is to set up simultaneous linear equations and to
solve them using algebraic rules of procedure. Pre-algebra students
are more likely to solve the problem using trial-and-error and com-
putations. One possible solution is to double the weight of the
barrel full of kerosene and then subtract the weight of the barrel
full of honey. Whether this task is classified as an arithmetic
task or an algebraic task depends upon some knowledge of the mathe-
matical experience of the students and their approaches to solving
the task. In this case, to say that '..he subject area of Problem 3.14
is "algebra" refers more to the structure of the task and one effi-
cient way of solving it than to the content of the task.

The degree of specificity of the mathematical topic of a task
will depend upon the purpose of the task. If a goal of a researcher
is to seek a contrast or variation in approaches resulting from solv-
ing algebra problems as opposed to geometry problems, then the tasks
can be chosen to accomplish that goal. This implies varying the
global, traditional subject areas. However, if a teacher is struc-
turing experiences for the students in order to cover a variety of
algebra tasks, then more refined subject area stratifications need
to be used, such as "quadratic equations," "exponents," etc.

Another means of adding specificity to the mathematiCal topic
of a task is by identifying the problem type.. "Problems of a similar
type" commonly refers to a set of problems that can be solved by
using the same algorithm. Students are taught how to recognize a
certain type of problem and then how to apply an appropriate algo-
rithm. "Rate problems" and "work problems" are two such problem
types that most students encounter sometime during their first year
of algebra. As a content task variable, the term problem type will
be used more generally and"will refer to a class of problems with
similar attributes of the problem statement but not necessarily
solvable by the same algorithm. This definition corresponds to what
Silver labeled "pseudostructure." Problems of the same "type" often
draw on specific mathematical formulas or relationships which are
not explicit in the problem statement (such as, 4istance = rate,x
time); these may be essential to the translation of the problem
statement into a mathematical representation.

Formally, the c17ents of a problem are: the givens, the"stated
or implied operations that transform one or mori. expressions into one
or more new expressions, and the goal or goals. The problem statement

9 8



-83-

generally includes a full or partial specification of the givens, the
operations, and the goal(s). For two problems to be of the same prob-
lem type, the givens and the goal as describedin the problem statement
must be "similar" and from the same mathematical content area. As an
illustration, examine these two problems:

3.15 A spherical balloon is inflated with gas at the rate
of 100 ft3/min. Assuming that the gas pressure
remains constant, how fast is the radius of the
balloon increasing at the instant when the radius
is 3 ft.?

3.16 Water is withdrawn from a conical reservoir 8 ft. in
diameter and 10 ft. deep (vertex down) at the constant
rate of 5 ft3/min. Haw fast is the water level fall-
ing when the depth of water in the reservoir is 6 ft.?

(Thomas, 1969, p. 112)

Each problem statement specifies the shape of the container, the
dimensions of the container, and the rate at which an amount of fluid

is changing. The goal in each problem is to find the instantaneous
rate at which a specified dimension is changing. "Calculus" is the
mathematical topic of these problems, with "related rates" being the
problem type in the traditional sense. The above problems are very
easy to recognize as being similar and of the same problem type in

the sense defined here. The important thing to note, however, is
that these are examples for which two problems can be of the same
type as we have defined it, but for which no common solution algorithm
exists. Thus, as a content variable, "problem type" is not a suffi-
cient condition for ascertaining the structure of a problem. To

determine the type of a problem just by considering the surface char-
acteristics of the problem can be Misleading for the solution process.
In conducting research or providing instruction on problem solving,
both surface and structure characteristics are tmportant. Hence, in
contrasting problems, or varying problems according to type, two task
variables are simultaneously involved: the type of the problem deter-
mined from the problem statement, which is a content variable, and the
algorithmic method of solution, which is a structure variable.

Prob lel,Classification by Field of Application

Many interesting mathemdtical problems are derived from real-
life situations, or from disciplines other than mathematics. .The
/11 mathematical topic" of Oese problems does not adequately describe

the content of the problem. Thus a second major dizensionof content
variables is the "applied field" of the task, which is the disci-
pline or real-life situation from which the task arises. This

9
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dimension cannot be used to describe every task, since many problems
are "purely" mathematical, and contain no reference to an applied
field.

Genuine applied problems add a new dimension to problem-solving

instruction and research. In its most general characterization,
applied problem solving requires the building, development and test-
ing of a mathematical model. Four steps in a model-building process
given by Maki and Thompson (1973) are illustrated in Figure 3.1. The

original task arises from a "real world" situation where observa-
tions are made and questions posed. Initially the task is general,
global, and not necessarily well-defined. The next step is to make
the task as precise as possible by making certain idealizations and
approximations. In this step irrelevant information is identified,
and significant potnts are considered. The'terminology that is used
still reflects real things, "but the situation may no longer be com-
pletely realistic." The ihird step is to convert the real model into
a mathematical model in which the real quantities are represented by
symbols and mathematical operations. Now the task is in such a state
that appropriate mathematical ideas and techniques can be used to
reach the conclusions and predictions (step 4). To complete the
cycle, results are compared to the original situation to verify that
the conclusion (solution) is in agreement with the "real world" task.
If not, the cycle begins again.

. -

A distinction needs to be made between genuine applied problems
and those problems that are merely embedded in a story or which
merely borrow words from a discipline other than mathematics or
from real-ltfe situations. For the latter type of task, the'disci-
pline or real-life situation provides a context for the task, but
cannot be considered as a bona fide applied field.

An illustration of this distinction is given by Pollak (1978).

He discusses five different forms, three of which have an applied
field.

1) Problems with immediate use of mathematics in everyday life:

3.17 A boy has 24 ft. of wire fence to make a rectangular
pen for his pet rabbit. He plans to use all the
fence 'in making the pen. Could he make a pen 12 ft.
long and 12 ft. wide?

Why or why not? Could he make a pen 8 ft. long and
3 ft. wide? How about 8 ft. long and 4 ft. wide?
Give five examples of lengths and widths he could
use forhis pen. (Applied Field: real-life situation.
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Figure 3.1 Four Steps of the Mcdel-BUilding Process (Maki & Thompson,
1973, p. 10)
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2) Problems that use words from everyday life and pretend to be
applications:

3.18 An electric fan is advertised as moving 3375 cubic
feet of air per minute. How long will it take the
fan to change the air in a room 27 ft. by 25 ft. by
10 ft.? (Assume all old air must be removed first.)
(This problem does have an applied field.)

3) Problems of Whimsy--use of words from daily existence or from
another discipline, when it is quite clear no real application
is intended:

3.19 A bee and a lump of sugar are located at different
points inside a triangle. The bee wishes to reach
the lump of sugar, while traveling a minimum distance.
under the requirement that it must touch cal three
sides of the triangle before coming to the sugar.
What is the shortest path? (No applied fiel6.)

4) Genuine applications in real life:

3.20 What is the best way to get from here to the airport?
(Applied field: real-life situation.)

5) Genuine applications to other disciplines.,

3.21 A body moves without friction over a horizontal
table. If its initial velocity is 4 ft. per second,
how far will it travel in 12 seconds? What if there
is friction? (Applied field: physics.)

(Pollak, 1978, pp. 233-238)

The problems having an applied field are those that have (a) imme-
diate use in everyday life; (b) genuine application in real life; or
(c) genuine application to another discipline such as physics, com-
puter science, anthropology, social science, business, or economics.
The "applied field" of the task is then the discipline (other than
mathematics) or the real-life application.

Applied problems have both an applied field and a mathematical
topic classification. For example:

3.22 Whct'':tst kelihood of a couple having a hemo-
philiac so en it is known that the wife's tvo
brothers are both afflicted with the disease?
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(This situation is depicted below.)

[:1 male

ofemale

aril; ted

The applied field of this task is genetics, while the subject area
of the task is probability.

The mathematical topic of an applied problem is not always
apparent from the problem statement alone. Problem-3.20 is stated
very generally, and could be answered without any mathematical con-
siderations at all: the best way to get to the airport may be by
private automobile, since all public means of transportation are not
in operation due to a strike, and the distance to the airport pre-
cludes walking or taking a bicycle. If a quantitative criterion is
set to determine the best way, then this will establish the mathe-
matical topic of the task. Some applied problems, due to their
breadth, may fall in more than one mathematical subject area.

Recently, more emphasis is being given to applied problems in

instruction, as evidenced by the algebra series, Algebra Through
Applications with Probability and Statistics (Usiskin, 1916). Even
in this series, however, several problems are merely embedded in a
context from a real-life situation or other discipline and do not
have a genuine applied field content. However, there are many prob-
lems which do come from real-life situations, as illustrated by the
following:

3.23 Monthly eZectric rates for a residence in Illinois
(as of April, 1974) were as follows (quoted from
Commonwealth Edison pamphlet):

3
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Monthly charge
1st 100 kw hrs. of use
Next 225 kw hrs. ofuse .

Over 325 kw hrs. ofuse

$0.95
.0385 per kw hr.
.0282 per kw. hr.

.0279 per kw hr.

Tax is added to this and adjustments are made if the
price of energy to Commonweeth'Edison changes. What
wouldbe the monthly charge for .e4ch amount of energy?

5. 100 kw hours 6. 200 kw hours
7. 400 kw hours 8. 700 kw hours

(Usiskin, 1976, p. 191)

Applied problems as used in problem-solving research may evoke
different behaviors and solution processes from those evoked by prob-
lems in pure mathematics. Knowledge of specific mathematical rela-
tionships which pertain to an applied field, such as equations of
motion in physics, may be necessary. There may be an iacreased com-
plexity in the translation process, and several alternative solutions
may exist. Because of their special nature, applied problems deserve
special attention in research and in the teaching and learning of
mathematics. A greater understanding of this content variable would
facilitate the increased use of applied problems in instruction.

Semantic Content Variables

The third major category of content variables in Table 3.1 des-
cribes the meanings of the mathemrical words and phrases that form
the statement of the problem. This dimension we shall call "semantic
content," and divide it into two parts for discussion--key words and
mathematical vocabulary. This dimension is used to describe the
semantics of natural and technical language that may affect problem-
solving performance.

Natural language is related to problem-solving performance through
the large number of written problems students face during their mathe-
matics experiences in school. Such problems require comprehension of
the written statement and translation of the problems into mathematical
expressions that model the mathematical structure of the problem. Of

course, very complex and difficult problems can be stated using a few
easily understood words; for eample:

3.24 Show that it is impossible, using a compass and
straightedge, to trisect an angle.

On the other hand, trivial mathematical problems can be embedded in
lengthy or semantically complex statements. The words used to state
a problem do not necessarily reflect the structural complexity of

I 01
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the problem, but do affect the comprehension and translation of the
problem statement. Performance on word problems thus is influenced
by a combination of-linguistic and mathematical abilities.

Key words have been given a great deal of attention over the
years in solviftg computational word problems.* Students are taught
to use certain words such as "less," "more," "each," "gained," and
"altogether" as verbal lues for specific operations. Loftus (1970),
however, found that the verbal cue variable did not have a signifi-
cant regression effect on problem difficulty for a group of sixteen
disadvantaged sixth-grade students solving arithmetic problems. The

verbal cues that were used were "and" for addition, "left" for sub-
traction, and "each" for multiplication.

The benefit of using "key words" as an approach to instructio*
is open to question. Nesher and Teubal (1975) point to the fact
that the same words appear at times as valid cues, and at other
times as distractors with a meaning contrary to the most common
usage. For a group of approximately 120 students toward the end of
first grade, they found that a greater percentage of students
answered the problem correctly when a key word was given that
corresponded to its usual operation, than when a key word was given
that did not correspond to its usual operation. Eighty-seven percent
of the children who attempted an addition problem which used "more"
as a verbal cue answered the problem correctly. Only 62 percent of
the children answered correctly a similar addition problem which used
"less" as a verbal cue'. The two addition problems were:

"More" as a verbal cue

3.25 The milkman brought on Sunday 4 bottles of milk more
than on Monday. On Monday he brought 7 bottles. How
many bottles did he bring on Sunday?

"Less" as a distractor

3.26 The milkman brought on Monday 7 bottles of miZk.
That was 4 bottles less than he brought on Sunday.
How many bottles did he bring on Sunday?

(Nesher and Teubal, 1975 . 51)

Placing too large an emphasis during instruction on the identification
of key words in word problems can thus mislead students.

*These are words from natural language which commonlye a
specific mathematical interpretation.

To 5
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Figure 3.2 Misinterpretation of Probiem 3.28
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Figure 3.3 Correct interpretation of Problem 3.28
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Here is another example:

3.27 Two piles of ccal are in a yard;
and pile B has 12 tons. A truck
5 tons of the coal from pile A.
away all but 4 tons from pile B.
left in the yard?

pile A has 15 tons
takes away all but
A second truck takes
How much coal. is

(Weaver)

The key words in this problem, "take away" and "left," all naively
suggest a subtraction problem, but the correct operation is addition,
This type of-problem is useful in investigating whether students ard\I
focusing on the superficial characteristics of the problem (rote, N
transIP ion of key words) or are able to comprehend the meaning of
the proolem statement and select the correct mathematical represen-
tation.

Up to now we have been discussing key words as either verbal
cues or possible distractors. Another important type of word is
one which is essential to the meaning of the problem, but which
does not suggest an operation. This type of word will be called a
critical word. The critical words of the following problem are
underlined.

3.28 During the first three years of growth, a tree grnws
only its trunk. During the fourth year the trunk
divides and grows into two mal:n branches. During
the fifth year and every year thereafter, it grows
two new branches on each old branch. How many new
branches are grgwn during the eighth yeap of growth?
How many new and old branches does the tree have after
eight years of growth?

(Gimmestad, 1977)

As the task is wo-ded, it is very easy for someone to misinterpret
the problem and assume that as the trunk divides into two branches,
so will the branches. The word "divides" can create a "mind-set"
for the remainder of the problem. The ward "on" is crucial co the
meaning of the problem.

A misinterpretation of the problem is a "tree diagram" with
ech branch dividing in two (see Figure 3.2). The correct inter-
pretation has the two new branches growing on the existing branches,
so that where there was only one branch before, there are three (see
Figure 3.3).

A critical word, such as "on" in problem 3.28, is essential to
understanding the mathematical relationships described in the prob-
lem. One means of investigating critical words and the comprehension
of word Problems is the Cloze procedure. When using this procedure,

10
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a number of words of the problem are replaced by blanks, anywhere from
only one word to every fifth word being omitted. The student is asked
to fill in the correct words. A good indication of how students com-
prehend Problem 3.28 can be obtained by replacing the word "on" with
a blank, and asking the student to fill it in.

The second part of our discussion of seMantic content concerns
mathematical vocabulary. Natural language words used in the.problem
statement have their standard meaning as they are used in everyday
life, while mathematical language refers to words that take on special
meaning as they are being used in a mathematical contexL. The word
"function," for example, in mathematics means mapping from one set to
another; the common meaning of "function" is the specifi7 action or
use of a thing, such as the "function" of the brain.

Even when the words in the statement of a problem assume their
ordinary meaning, Kane (1968) argues that reading mathonatics texts
or problems requires a special ability, different from that required
to read ordinary prose. However, mathematical vocabulary is'pattic-
ularly important in problem-solving research studies that use a
control group which has not been exposed to a particUlar form of
instruction. When presenting unfamiliar problems to control groups,
differences in performance may be due to a lack of familiarity with
the mathematical vocabulary in the problems, rather than to differ-
ences in the ability to carry out mathematical operations, Thus,it
may be relatively easy to produce an "effect" on measured problem-
solving ability in an experimental group, merely by the Introduction
of technical mathematical vocabulary.

Variables Describing the Problem EZements

A fourth category of content variables concerns the problem
elements. The "elements" of a problem correspond to the three types
of information of which formal problems are normally composed: givens,

operations, and goals. The attributes of each set of elements provide
another means of describing the content of the problem. Are all of
the givens stated explicitly, or are some conditions implied but not
explicitly stated? What are the given conditions or items of numeri-
cal information? Are the givens related conjunctively (and) or dis-
junctively (or)? What operations are stated or implied by the problem
statement? The goals of a mathematical problem can likewise be class-
ified. One important classification of goals is into the categories
"to find" or "to prove." "To find" goals can be classified further
by describing that which is to be found. The list below gives some
examples of how the goals of "problems "to find" can vary.

1 ot4
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A number as the goal:

3.29 Find a four-digit number which is an exact square,
and such that its first two digits are the same and
also its last two digits are the same.

(Shklarsky et al. 1962, p. 27)

A set of numbers as the goal:

3.30 Find five positive whole numbers a, b, c, d, and e
such that there is no subset with a r-5um divisible
by 5.

(Posamentier and Salkind, 1970)

A process as the goal:

3.31 Three cannibals and three missionaries are on the bank
of a river. Alt of them want to cross the river, but
they have only one boat that holds two people. How
can they an get across the river without aver having
the canniba7,3 outnumbering the missionaries on either
side of the river?

An expression as the goal:

3.32 In quadrilateral ABCD, g74 and n are each equal to t,

and 4:ABC = 1A +4C. EXpress ED in terms of t.

A construction as the goal:

3.33 Given a line AB, construct, when possible, a point P
in AB such that the sum of the squares on AP and PB
is equal to the area ofa given squaxe. When is it
impossible?

?

A geometric figure as the goal:

(Duren, 1960, p. 28)

3;34 Draw a rectangle with a perimeter of 81 cm and with
the maximum possible area.

A logical conclusion as a goal:

3.35 TWelve persons were traveling and brought a dozen loaves
of bread.- Each man brought 2 loaves, each woman brought
half weloaf, and each child a quarter of a loaf. How
many.men, Women and children were traveling?

09

(Krutetskii, 1976, p. 150)
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Problems "to find" can also be partitioned in other ways by con-
sidering the nature of the goal. In the following problem, the goal
is to find the configuration of coins that satisfies the conditions:

3.36 Judy has 32 coins with the total value of $2.00. She

does not have any nickels. What coins does she have?

This differs from the following problem, where the goal is to exhaust
all of :he possibilities that meet the conditions:

3.37 Find the number of ways in which 20 U.S. coins consisting
of quarters , dimes and nickels can have a value of $3.10.

(Webb, 1976)

Even though both problems "to find" can be classified as money problems,
the nature of the goal varies. Such a distinction is particularly
important when selecting problems which are more likely to be solved
using one approach than another. Problem 3.36 is well suited for a
VI guess and test" approach, since the conditions are explicitly speci-
fied and it is easy to generate possible sets of coins. The solution

can be verified by ensuring that the set contains 32 coins, does not

have any nickels, and totals S2.00. Guessing and testing is one
approach for Problem 3.37 as well, but will generally not lead to a
solution without additional refinement. The problem solver needs to
develop some means of analysis to ensure that.all of the possibilities

have been exhausted.

Problems "to prove" vary in a similar fashion. Such problems can
have as their goals proofs of theorems, lemmas, statements, or expres-
sions. This categorization of goals is to be distinguished from the
classification of problems by possible type of proof--direct, indirect,
inductive, reduc,tio ad absurdum--which would represent a structure
classification.

Mathematica1 Equipment

Other categories of content variables exist, quch as the type of
equipment required for the task. In this category, problems could be
classified in accordance with the requirement for use of mathematical
materials, such as a calculator or straightedge and.compass. The

content variables given here, and summarized in Table 3.1, are not
exhaustive. The more important areas, those that appear most often
in instru:ttion and research, have been identified.

3. The Classification and Definition of Context Variables

The context of a task refers to circumstances, surroundings, for-
mats and instructions that are included as part lf the task and which
influence the understanding of the task. The distinction we make
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between context variables and situation variables (which are not task
variables) is that context variables,are intrinsic to the task, and
not descriptive of the external environmental circumstances in which
the problem is solved. On the other hand, the content-context
dichotomy is analogous to the substance-form dichotomY. Whenever .

a problem is given, choices are made about the form of the problem.
It may be presented orally, in written form, or pictorially. The
essential information of the problem can be embedded in a story.
Hints may be included or made available. Extraneous non-mathematical
information may be included. All of these choices determine the'con-
text of the problem.

This section describes a set of context variables, whi h are
summarized in Table 3.2. Awareness of the possible variations of
problem context can improve the teaching of problem solving and
guide the development of sets of problems to be Used in the study
of problem solving.

Problem Embodiments or Representations

The essential elements of a problem are the givens, the opera-
tions, and the goals. The most succinct statement of these will be
called the kerneZ of the problem. Often the kernel is embedded in
a verbal statement or story that has no mathematical relevance to
the problem, although it may affect motivation as well as overall
problem difficulty. The verbal embodiment of.the problem then is
the statement that is used to present the essential.information of
the problem. Variations in the verbal embodiment of a problem are
illustrated below. The simplest version of the problem is given
first. The next two versions increase in both syntactic complexity
and the complexity of the story contert that is described.

Sum Problem

3.38 Find the smallest set ofwhole numbers such that
every integer from 1 to 7 is either an element of
the set or a sum of the elements in a subset.

Modified Golden Chain Problem

3.39 A woman har a chain with seven gold links. She would
lik to take a seven-day trip by carriage. The

ver has agreed to take her for one link of the
golden chain for each day, payable at the end of the
60y. If it costs the woman five dollars to have a
4eweler open one Zink, what is the least amount of
Money she would have to spend to open links so the
,driver can have one link the first day, two links
the second day, and so on?
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Table 3.2 A Summary of Context Task Variables

1. Problem embodiments or representations

manipulative
pictorial
symbolic
verbal
etc.

2. Verbal context or setting

familiar vs. unfamiliar
applied vs. theoretical
concrete vs..abstract
factual vs, hypothetical
conventional vs. imaginative
etc.

The verbal context or setting refers to such extraneous
non-mathematical information as may be contained in the
problem statement.

3. Information format

presence or absence of hints
multiple-choice vs, free-answer
etc.

r72



-97-

Golden Chain Problem

3.40 A Chinese prince who was forced to flee his kingdom
by his traitorous brother sought refuge in the hut of
a poor man. The prince had no money, but he did have
a very valuable golden chain with seven links. The poor
man agreed to hide the prince, but because he was poor
and because he risked considerable danger should the
prince be found, he asked that the prince pay him onv
link of the golden chain for each day of hiding. Since
the prince might have to flee at any time, he did not
want to give the poor man the entire chain; and since
it was so valuable, he did not want to open more links
than absolutely necessary. WhaA,is the smallest number
of links that the prince must open in order to be cer-
tain that the poor man has one link on the first day,
too links on the second day, etc.?

The most common form of embodiment of a problem is a story. The
general opinion is that presenting a problem as part of a story will
in,:rease the level of interest of the student in finding the solu-
tion to the problem. In some cases, this backfires and the embodi-
ment actually retards interest in the problem; this may occur if
the difficulty in extracting the relevant information is excessive.

in addition to purely verbal embodiments, problems may be pre-
sented in manipulative, pictorial, or symbolic form. For example, a
problem presented in a manipulative embodiment might include a physi-
cal model of a river, a dock on either side, one ferryboat, and a
number of cars. The problem is to transport the cars on the ferry
to the other side of the river. The conditions of the problem can
be varied by changing the size of the ferry and the number of cars.
The goal of the problem can be varied by restricting the number of
trips or the number of cars allowed on the ferry boat at one time,
stipulating that the smallest possible nuMber of trips is desired.

The problem is a partitioning problem for younger children. The
solution may be found by manipulating the objects.in the model. The

conditions of the problem do not have.to be interpreted exclusively
fresm the verbal problem statement, because the child Can.determine
these from the physical objects themselves, being limited in the
number of cars that will fit on.the ferry boat at one time, or by
the total number of cars.' Another benefit of using the manipulative
form, besides the ease,with which students can understand the prob-
lem, is that an observer can more easily describe the processes that
students use in finding the solution. It is very easy to record the
trials that are made and the sequence of steps that is followed.

A second manipulative problem involves a cube that is painted
red on the outside and is divided into 27 equal cubes as.shown.
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The subject is asked to determine how many small cubes are painted on
4 sides, 3 sides, 2 sides, 1 sides and 0 sides. If a real cube is
placed in front of the subject, even though the cube cannot be
handled, the problem can be considered to hatre a manipulative com-
ponent in its embodiment. As the solution of the problem progresses,
the subject may be allowed to look at one of the smaller cubes as a
hint. Which .qmall cube the student selects, and what information is
derived from the'small cube, will help the observer determine what
the student is considering in solving the problem.

Manipulative problems are not restricted in theirappeal to
children only. The problem of "instant insanity" is a good example
of a concretely presented problem suitable for adults. The puzzle
has four cubes with each face painted with one of four colors. The

object is to stack the cubes so that exactly one of the four colors
is showing on each side of the stack. Even though the problem is
presented in a manipulative embodiment, adults will often create a
symbolic embodiment to solve this problem.

A third type of problem embodiment is the pictorial. As an
example, problems can be presented pictorially with no words or very
few words accompanying the picture, such as the following:

3.41

III
I I

f I I I =...6. .1,.
The pictorial embodiment is generally considered to be a more abstract
form of presenting a problem than the manipulative embodiment. Con-
ceivably, a person could create a physical model of the problem and
solve the problem manipulatively. However, it is more likely that
tradslation will be in the direction of a more abstract (i.e.,
symbolic) representation. Pictorial presentations do not have all
of the advantages of manipulative presentations, but they do reduce
the interaction between problem-solvingyerformance and verbal ability.
At the same time other variables may be introduced in addition to
simply that of presentation. For example, pictorial presentations may
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introduce variables of spatial relationships as well. The reader is
referred to studies by Moses (1977), Schonberger (1976), and Frand-
sen and Ho'den (1969) for examples of this phenomenon.

Finally we have the symbolic embeadiment, which is the most
commonly used. This category includes problems presented exclusively
in written form, or by using symbols such as those in an equation.
This is the most abstract of the forms of problem embodiment.

The three forms of problem presentation: manipulative, pictorial,
and verbal-symbolic, parallel the three forms of representation used
by. children to store and retrieve.information as identified by Bruner
(1966). These are: enactive, things we know through action; iconic,
things that depend upon visual or other sensory organization; and
symbolic, representations in words or language. Bruner suggests that
intellectual development proceeds with the development of each of these
systems until all have been mastered. Thus we expect the ease of work-
ing within a particular type of problem embodiment to be directly
related to a subject's level of cognitive development, as well as to
variables such as verbal and spatial ability.

Verbal Context or Setting

The verbal embodiment of a problem can have different character-
istics with respect to the problem solver. One dichotomous set of
characteristics is the abstract versus concrete embodiment, discussed
by Goldin and Caldwell in Chapter VI. An "abitract7 word problem
involves a situation which describes only abstract or symbolic
objects, while a "concrete" word problem describes a real situation
dealing with real objects.

Abstract

3.42 There is a certain given nimber. Three more than
twice this given number is equal to fifteen. What
is the vaZue of the given rumber?

Concrete

3.43 Suzan has some dolls. If rhe had four more than
twice as many, she would have fourteen dolls. How
many dolls does Susan reall.y have?

A slightly different version of the atistract-concrete dichotomy was
used by Krutetskii in one of his serics of problems. The problem
set consisted of prohleas that made a gradual transformation from
"concrete" to "abstract," where the mcst abstract problem used only

176
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variables and the concrete problem used only numbers. The problems
in between included both variables and numbers. The two exiieme
variants of a problem in one set are given below:

3.44 The Zength of a room is 6 m, its width is 3 m, and
its height is 3 m. What is the volume of 4 such
rooms? (Concrete)

3.45 The length of a room is b m, and its width and
height are a m each. What is the volume of n
such rooms? (Abstract)

(Krutetskii, 1976, p. 124)

A second characteristic of the embodiment of a verbal problem,
discussed in Chapter VI, is the factual-hypothetical dimension.
Problem 3.42 illustrates a factual problem and Problem 3.43 a
hypothetical one. The distinction between the two is that a
factual problem merely describes a situation, while a hypothetical
problem suggests a possible change in the situation.

Many other characteristics of verbal problem contexts have
already been mentioned in the review of the literature--familiar
vs. unfamiliar contexts (Brownell and Stretch, 1931), social-economic
vs. mechanical and scientific vs. abstract (Travers, 1967), low needs
vs. higher needs (Scott and Lighthall, 1967), and outdoor vs. computa-
tional vs. scientific (Cohen, 1976). The preponderance of evidence is
that most of these variables do not greatly affect problem difficulty
when other variables are controlled.

Information Format

Another dimension of problem context is the way in which the
problem is partitioned when it is presented. Is all the information
given at once, or is only part of the information given initially,
with time allowed for processing before new information is given?
Is there some information which is given only when requested by the
problem solver? Is information given in the form of "hints"?
Different parts of the problem may even be presented in different
embodiments--manipulative, pictorial, or verbal-symbolically.

The most common inforMation format is to present the problem as
a whole, including sufficient information for a unique solution. The
use of other formats may depend upon the purpose of the problem. For
example, if the purpose is to study how a child uses different condi-
tions of the problem, one condition can be given at a time. For
example,

3.46 How many chickens and pigs are there, if there is
a total of 50 legs?

A fourth grader working this problem will in most cases discover that
there are many solutions. The problem becomes one of organizing the

1 1 6 .
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information and defining some system so that all possibilities can be
exhausted. If a second condition such as: "There are twenty heads"
is given, the child can use the information already derived, together
with the new condition, to obtain a unique answer. The researcher or
a teacher may acquire more information in this way about the problem-
solving procedure used by the child than if both conditions had been
given together.

"Hints" are another way of varying the formats of problems.
Some studies have allowed the problem solver to work on the problem
as far as possible alone, and then have given hints to see what the
problem solver does with the new information. Soue researchers include
hints that will eventually lead to the solution, to ensure that the sub-
jects reach a solution and to reduce the likelihood of frustration.

Roman and Laudata (1974) constructed a CAI program to instruct
elementary school children in grades 4 and 5 on word problems. They
used a series of three hints to help identify the general steps taken
in solving word problems. For example:

3.47 The problem: In April Harvey heZd some toys. Yester-
day, he divided the toys into 45 boxes. How many toys
did he hold in April, if there were 3 toys in each box?

First hint: Restate the question: Find the number of
toys Harvey started with. Now reread the problem.
(Identifies the unknown.)

Second hint: Restate the question: It is similar to
Harvey's toys divided into 45 boxes given 3 toys in
each box. ? = toys Harvey started with. Now reread
the original problem. (Restatement of problem in
single syntactic form, omitting superfluous informa-
tion.)

Third hint: Translate the problem to a number sen-
tence: ? toys/45 boxes = 3 toys in a box, or ?/45 =3.
Now solve the number sentence. (A mathematical state-
ment that relates the variables in the problem to an
appropriate number sentence.)

(Roman and Laudata, 1974)

Hints can provide useful information not only for the problem
solver but also for the researcher and the teacher. How the hints
are being used, how many are needed, and which hints provide the key
to solution all yield useful information about the thought processes
students are using.

In this section, we have reviewed three categories of context
variables: problem embodiments, characteristics of the verbal

l 1 7
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contexts or settings, and information format'. In CNtpter IX, this
classification is applied to derive some suggestions for the more
effective teaching of problem solving.

4. Summary

a

In this chapter, schemes have been proposed for the classifica-
tion of content and context variables. Content is taken to refer to
the substance or meaning of the problem statement, while context
refers to the form or inessential characteristics of the problem.
The main categories proposed for content variables are: Mathematical
Topic, Field of Application, Semantic Content, Problem Elements, and
Mathematical Equipment. The main categories proposed for context
variables are: Problem Embodiment, Verbal Context, and Information
Format.

The proposed categories are not exhaustive. As more research
on problem solving is performed, and as research interests change,
new categories and subcategories may have to be added. For example,
current interest in sex-related differences in mathematl.cs education
suggests that attention will be paid to gender in describing the
verbal context of problems. To list all possible content and
context categories would be an insuperable task. The classification
schemes described here provide a useful framework for studying the
effects of varying content and context in mathematical problems.
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Structure Variables in Problem Solving

by

Gerald A. Goldin
Northern Illinois University

DeKalb, Illinois

-

While syntax, content, and con xt variables principally describe
the statement or embodiment of the roblem, structure variables describe
the mathematical properties of a p oblem representation (see Chapter I,
Fig. 1.1). In order to derive s tax variables, it may be necessary to
carry out a linguistic analysis f the problem statement; in order to
derive content and context vari les, one may classify terms in the
problem statement in accordance with their mathematicarmeanings or
one may classify the given pro em embodiment in accordance with its

characteristics. These variab es do not require a mathematical analy-
sis of the problem for their refinition. By contrast, structure

variables are those which sr obtained only by means of some such
analysis.

Structure variables depend for their definition on the partic-
ular representation of th problem within which the analysis takes place.
For example, a structurejvariable which has been studied fairly exten-
sively is the "number of-steps" required in solving a problem. However,

this number will obviously depend upon the method of problem solution
which is selected as the standard. In addition, it will depend on what
one chooses to call a "step"--to pass from the equation 2x + 3x = 10

to the equation 5x n, 10 might be thought to require only one step; or
it might be thought to require two steps [2x + 3x = 10, (2 + 3)x = 10,

5x = 10]; or even more steps [2x + 3x = 10, 2x + 3x = (2 +3)x, (2 + 3)x

= 10, 2 + 3 = 5, 5x = 10]. Is there, then, such a thing as "intrinsic"
problem structure, apart from the particular problem solver?

Certainly different problem solvers may formulate different repre-
sentations from the same problem statement. There may bea wide
variety of different and creative approaches to gaining insight into
a problem, including reference to related but distinct problems. Rules

of procedure may be open to interpretation. Nevertheless, it is the
viewpoint of this chapter that, given a set of well-defined rules or
operational procedures, a well-defined structure wIll be generated that
is subject to formal analysis. Furthermore, a mathematical problem
translates into just such a system of rules of procedure, sometimes
stated explicitly in the problem and sometimes to be understood from
the mathematical framework within which the problem is presented. This

is the sense in which we interpret problem structure variables as thsk

variables.

-103-
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When rules of procedure are subject to more than one interpretation,
it is necessary to make explicit the possible interpretations, and these
become part of the description of intrinsic problem structure. Likewise,
when different representations of the problem may be obtained through
translation of the problem statement, it will be necessary to select one
or more of them for analysis in order to obtain problem structure varia-
bles. For example, if asked to find the minimum value of the expression
y x2 - 2x + 3, a first-year algebra student might construct a table of

values, proceeding by systematic trial-and-error to arrive at a minimum
value. Another possibility is to draw a graph of the function y x2 -

2x + 3 and, from a visual inspection, determine the minimum. A calculus
student, having available additional rules of procedure, might set the
derivative equal to zero, solve for x, and substitute. Thus, the prob-
lem might be represented by means of a sequence of values of x and
corresponding values of y; or by means of a graph, or by means of a
sequence of equations beginning with R 0. But the existence of such
different representations does not mean that intrinsic problem structure
variablzs are impossible to define, Rather it means that we must be
explicit about our choice of representation in performing the analysis.
It will usually be desirable to consider those representations most
commonly employed by the population of subjects for wbom the problem
is intended.

In this chapter we shall develop and apply methods of state-space
analysis to define and examine problem structure variables. Some of the
development is familiar to students of "artificial intelligence" but not
in general to mathematics educators; this includes much of the material
at the beginning of Section 2, which is included for completeness. After
introducing the basic definitions, we shall return to the question of
characterizing "relatedness" among problem representations. We shall
also discuss the sense ir which algorithms and strategies may be regarded
as part of the "intrinsic" problem structure.

In the study of problem-solving processes and the teaching of
problem-solving skills, task variables are usually taken to be the
independent variaBles--they are subject to the control of the researcher
or the teacher through the selection or creation of appropriate problems.
Dependent variables of interest include variables describing the amount
of success in problem solving (problem dIfficulty), variables describing
the employment of specific processes (patterns of behavior, strategy
scores), and variables which measure the learning which has taken place
during problem solving (transfer to related problems). Thus, we shall
most frequently be interested in defining problem structure variables
which are likely to influence these outcomes. The term "complexity
variables" can be used to highlight those variables expected to affect
directly the problem difficulty.

Before proceeding with the development, we shall briefly survey
some of the research related to problem structure variables.
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1. Review of Related Research,

A dramatically increasing body of research amplays "artificial
intelligence" models, or mechanical models, to describe human problem
solving. Some of this research is oriented toward finding the most
efficient algorithms or strategies-for solving problems with a com-
puter, which necessitates the formal analysis of the structure of
problem representations (Arbib, 1969; Banerji, 1969; Hunt, 1975,
Nilsson; 1971). Such formal analysis is reproduced and extended in
the present chapter, from the standpoint of examining task structure
variables which can affect the outcomes of problem solving.

The "state-space representation" of a problem pravides the basis
for much of our formal analysis (Hunt, 1975; Nilsson, 1971). One goal
of artificial intelligence research has been to program high-speed
computers to solve problems in logic, to play games such as chess and
checkers, or to make decisions in specified situations to obtain the
most favorable possible outcome. Thus, an entire branch of the field
is devoted to obtaining efficient search algorithms, by means of which
the mechanical problem solver can "look ahead" in the state-space or
game tree, or "foresee" the outcomes which are possible following a
particular choice. Nilsson discusses "breadth-first" and "depth-first"
search algorithms--roughly speaking, in the former all possible contin-
uations are examined, a single step at a time; in the latter, a single
continuation is followed to its end before another one is tested. In

addition there are search algorithms which combine features of both
these approaches. Complications arise because there must be an effi-
cient means for the mechanical problem solver to "remember" which
states have already been entered, and which have not.

Since for most problems or games the number of possible branches
rapidly becames more than astronomical, the field of choice must some-
how be narrowed. In order to avoid searching to the very end of every
path, a value may be assigned to each state based on information avail-
able in that state. This evaluation function represents a measure of
expectation for future success. An example of this technique is the
use of "positional judgment" in chess, whereby such features as
Ifcontrol of the center" and "safety of the king" affect the desir-
ability of a position. Once criteria for such an evaluation have beet,
established, the search algorithm may be constructed tp look only n
moves ahead, to calculate the evaluation function for the terminal
states reached, and to make the choice which maximizes the terminal
value. Procedures based on such evaluation functions are called "hill-
climbing" by Wickelgren (1974), and form an important component in his
survey of problem-solving methods. In a competitive game, the choice
is made which maximizes the minimum value (across opponent's moves) of
the terminal states'resulting from the choice. A modification of this
"minimax" procedure which further reduces the number of states in the
search is to select only a narrowed class of moves whose continuations
are to be investigated, based on pre-specified criteria.
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The "General Problem-Solver" of Newell, Shaw, and Simon has greatly
influenced the field of artificial intelligence, as well as providing a
take-off point for the modelling of human problem solving (Ernst and
Newell, 1969; Newell, Shaw, and Simon, 1960). It embodies a kind of
depth-first Search algorithm in which the first object of the program
is to identify a subgoal state which might eventually lead to solution
of the main problem. The subgoal state is chosen to be "less distant"
in some suitable sense from the goal state than is the initial state.
When such a subgoal has been identified, control switches to the tisk
of attaining the subgoal, prior to returning to the task of obtaining
the original goal. This technique is to be applied recursively, until
a string of attainable subgoals has been generated that extends from
the problem's initial state to its goal state. Thus Newell, Shaw, and
Simon take the position that utilization of the subgoal and subproblem
structure of a problem is fundamental to efficient problem solving. In

this chapter, we shall utilize these concepts in defining some of our
task structure variables.

The geometry theorem-proving machine of Gelernter (1959, 1960)
utilizes the "syntactic symmetries" of a problem to facilitate the
state-space search. When the program has succeeded in reaching a
particular state, it proceeds to generate those states which are
syntactically equivalent to the state that was ruiched--that is, equiv-
alent by permutation of syntactically equivalent elements in the problem
statement. This procedure eliminates the necessifv of reproducing all
of the equivalent paths, and is more efficient in ituations where
symmetry exists. Nilsson also discussez states in the problem state-
space which le equivalent by symmetry. In this chapter, we make
extensive use of problem symmetry in defining certain task structure
variables which may be expected to affect problem-solving outcomes.

The methods that have been mentioned are directed towards more
efficient machine programming of problem-solving capabilities. While

the techniques are often motivated by introspectively or empirically
obtained information about actual human problem solving, their main
purpose has been effective programming. Another branch of research
motivated by artificial intelligence is directly concerned with-des-
cribing or modelling human problem solving.

One approach taken by researchers has been to try to simulate human-
problem-solving with mechanical procedures. Here the goal is to gene-
rate some human-like behaviors during the course of problem solving.
For example, Newell and Simon compare the trace of the General Problem
Solver solving a logic problem (that is, the actual sequence of routines
and subroutines employed) with the protocol of a human subject solving
the same problem, finding many parallels. Minsky and Papert (1972)
discuss Piaget's conservation experiments from the standpoint of the
acquisition of specific descriptive and deductive procedures. Paige

and Simon have compared Bobrow's STUDENT program for solving verbal
problems with subjects' protocols (Bobrow, 1968; Paige and Simon, 1966)
--STUDENT is discussed at greater length in Chapter VI of this book.
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A detailed'informition processing model haa.bein developed simulating
the observed kehaviors of subjects solvihg "concept,attainment" prob-
lems (Bruner, Opodnow, and Austin, 1956; Johnson,'1964). Efforts
along these lines, however, are sometimes subject to the limitation
that the programming methods employed do not lend themselves to gene-
ralization beyond a specific problem domain.

Beyond trying to simulate human problem solving with specific
programs, Newell and Simon have proposed a comprehensive model for
the human problem solvr as adinformation-processing system. They
introduce the concept of a "problem space" to represent the task
ltrtvirohment within the informatioh-processing system; they then hypo-
thesize that human problem solving,takes place by means of a search in
such a space. The problem space of Newell and Simon (1972) is described
in Table 4o1.: The first four components of the problem space correspond
almost exactly to the definition of a problem state-space representation
--with the important difference that instead of states of the problem
itself, the reference is io states of kniwledge about the problem.
Newell and Simon obtain what they call the "problem behavior graph" of
a subject in the "external problem space." It is the structure of this
"external problem space" which is the principal concern of the present
chapter.

The.missionary-cannibal problem and its.variants, described in
detail in Section 2 of this chapter, has been used extensively with
subjects whose moves have been retorded in such an "external problem
space" or state-space. Thomas used a variant of the problem called
"Hobbits and Orcs" with.young. adult subjects (Thomas, 1974). Hobbits
correspond to missionaries, and arcs to cannibals (see Problem 4.2
below). In Thomas' study, a control group solved the problem once;
an experimental group solved the problem first by beginning with a
state in the middle of the problem, and.a second time beginning with
the initial state. Thus the experimental group solved a subproblem
prior to attempting the main problem. The total number of moves, legal
and illegal, required to solve the first part of the problem (through
the first five moves in the state-space as dep4cted in Figure 4.2)
decreased significantly for the experimental group as co"..nared to the

control group. Thus practice on a later part of the prcb,em improved
performance on the earlier part. However, this practice did not
improve the subsequent performance of the experimental subjects on
the later subproblem segment as compared with their own earlier per-
formance on this segment. Furthermore, there was negative transfer
for the control group from the first part of the problem to the later
segment--that is, their performance on the subproblem was signifi-
cantly poorer than that of the experimental subjects in their first
attempt. These and other results lead Thomas to conclude that there
may well have been little correspondence between the external moves
of subjects in the state-space, and the sequence of knowledge states
entered.

Two other aspects of this paper are interesting in relation to
the study of task structure variables. One is the description of the
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Table 4.1 The Problem Space ofNewell and Stmon

A problem space consists of:

1. A set of elements, U, which are symbol structures, each representing
a state of knowledge about the task.

2. Aset of operators, Q, which are information processes, each
producing new states of knowledge from existing states of knowledge.

3. An initial state of knowledge, tic), which is the knowledge about the
task that the problem solver has at the start of problem solving.

4. Aproblem, which 'Is posed by specifying a set of final, desired
states G, to be reached by applying operators from Q.

5. The total knowledge available to a problem solver when he is in a
given knowledge state, which includes (ordered from the most trans-
ient to the most stable):

(a) Temporary dynamic information created and used exclusively
within a single knowledge state.

(12) The knowledge state itself--the dynamic information about
the task.

(c) Access; infbrmation to the additional simbol structures held
in LTM or EM (the extended knowledge state).

(d) Path information about how a given knowledge state was arrived
at and what other actions were taken in this state if it has
already been visited on prior occasions.

(e) Access infbrmation to other knowledge states that have been
reached previously and are now held in LTM or EM.

(0 Reference information that is constant over the course (4
problem solving, available in LTM or EM.

Abbreviations: LTM long-term memory.
EM external memory

124
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relative "difficulty" of each'ptate, as measured by the proportion of
incorrect responses and the mean response time associated with that
state. A secorid is the discussion of stages which oceuri-ed during the
problem solving--an estimate of three or four main stages is reached.
In an accompanying-paper by Greeno, further evidence in isupport of
such stages is presented (Greeno, 1974). Subjects seem to organize
their sequences of moves into small subsequences or clusters, rather
than making equally-paced, discrete moves. 'From the patterns of
pauses within the solution sequences, and differences between groups
receiving feedback information during problem solving, it'is concluded
that the solution process is "organized forward" in the !tate-space,
in contraSt to the "retroactive organization" of the General Problem
Solver.

Reed, Ernst, and Banerji (1974) designed a transfer study based
on the missionary-cannibal problem and a variant called the Jealous
Husbands problem (see Problem 4.9 in this chapter). These problems

4if7er not only in context but in structure--the states of the Jealous
Husbands problem stand in a many-to-one relationship with the states
of the missionary-cannibal problem. In one experiment, a group of
(adult) subjects solved the missionary-cannibal problem first, followed
by the Jealous Husbands problem (MC1-3H2); another group took the prob-
lems in the opposite order (JH1-1C2). Subjects were required to solve
each problem once, .1.1 the given order, and to solve both problems
within a 30-minute time limit. The result was that no significant
reduction in time, total number of moves, or number of illegal moves,
took place betweenithe Jill and 3142 groups, or between the MC1 and MC2
,&oups. In a second experiment, one group solved the missionary-

,. cannibal problem tWiee (MC1-MC2), and a second group solved the Jealous
Husbands problem twice (JH1-JH2). Significant improvement was found in
the time to solution for 3112 over JH1, and in the number of illegal
moves made by botri groups. A third experiment was like the first one,
except that subjects were told the relationship between the two prob-
lems. Here therefwas significant improvement for MC2 compared'to MC1,
both in the time to solution and in the total number of illegal moves;
however, there was no corresponding improvement for .1H2 compared to
JH1. Thus, there was significant transfer from the Jealous Husbands
problem to the missionary-cannibal only when the problem relationship
was pointed out,iand no significant transfer when the problems were

presented in thelother order.

The difficullty of the missionary-cannibal problem nnd its
variants does mot originate from the complexity of the state-space
itself, but fro* that of transforming one state into another; that
is, finding whiO moves are legal. In Section 3 of this chapter,
we shall see thOt this difficulty can be regarded as originating
from blind allOs in a more detailed, expanded state-space. This

leaves open the question of whether there would be effects similar
to those described above in problems where the moves from state to
state were mor elementary, and where the difficulty rested in the
selection of one move from among several available at each step.

1
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Many problems of this sort are described later in the chapter; one which
has been studied extensively using the state-space to graph behavior is
the Tower of Hanoi (see Problem 4.11).

Goldin and Luger have proposed a set of hypotheies describing possi-
ble patterns in the paths generated by subjects through the state-space
of a problem such as the Tower of Hanoi, and Luger investigated these
hypotheses for adult subjects in detail (Goldin and Luger, 1975; Luger,
1973, 1976). Included in the investigation is an analysis of the non-
randomness and goal-directedness of paths, the subgoal-directedness of
paths, the special role of certain "subgoal" states in establishing the
direction of the paths, stages in problem solving corresponding to ehe
solution of particular subproblems, and symmetry patterns in the paths.
The hypothesed are extended and discussed in the present chapter
(Section 3). In Chapter VII.C, Luger reports additional results in
which similar techniques are used to examine transfer between the Tower
of Hanoi problem and a variant, the Tea Ceremony problem.

Other variants Of the Tower of Hanoi problem have been used by
Hayes and Simon (1975) to study the consequences of changing the prob-
lem statement upon Che representations adopted by subjects. The tasks
used were eight different "monster-globe" problems, presented verbally,
all of which have state-spaces which correspond to the 3-ring Tower of
Hanoi problem, The problems differ from each other in two ways. In

"Transfer" problems, a monster or globe is moved from one place to
another, while in "Change" problems, a monster or globe is changed in
size. Secondly, in "Agent" problems, the monsters move or change the
globes, while in "Patient" problems, the monsters move or change them-
selves. In one of the experiments, half ofthe subjects solved a
Transfer problem followed by a corresponding Change problem; while the
other half solved the problems in reverse o der. In a second experiment,
one group of subjects solved an Agent probl m followed by a correspond-
ing Patient problem, while the other group olved the problems in

reverse order. The results of these studielyhowed that both the Agent-
Patient and the Transfer-Change variation affected the notation used by
subjects to solve the problem (i.e., the pro lem representation). Prob-
lems of the Transfer type were solved much m re quickly than problems
of the Change type. In the first experiment transfer of learning from
Transfer to Change problems was greater than khat for Change to Transfer
problems; that is, there was greater learning ransfer when the less
difficult problem was solved first. This resu t is in contrast to the
results of Reed, Ernst, and Banerji mentioned p eviously, those of
Dienes and Jeeves discussed below, and those of Waters (Chapter VII.A)
and Luger (Chapter VII.C). Agent problems were found to be slightly
less difficult than Patient problems. In the second experiment, trans-
fer effects were greater than in the first experimentand there was
greater learning transfer when the more difficult problem was solved
first. A limitation of these experiments is that while the state-spaces
for all of the experimental problems are mutually isomorphic, the solu-
tion paths are not--that is, the initial state for the second problem
solved by a subject does not always correspond to the initial state for
the first problem solved by that subject.

128



Next let us mention some studies in wbich the use of problem state-
spaces has not entered into the characterization of problem structure.
Dienes and Jeeves (1965, 1970) have studied the processes used by
children and adults in learning sets of rules for predicting the
appearances of cards'in a window, where a set of rules corresponds
to the structure of a mathematical group. The apparatus in the first
repart consisted of a board with a window in which a number of different
symbols or cards could be placed. The subject was given the same cards
as those which could appear in the window. On each turn, the card which
appeared in the window depended on the card which was there previously,
and the card that was played by the subject, Eaih subject played cards
in succession and made predictions, in an attempt to learn the "rules
of the game." The underlying structures corresponded to: (a) the two-
element group, (b) a symmetrical two-element structure (not a group),
(c) the cyclic group with four elements, and (d) the Klein group. In

the second report, the study of transfer, more complicated groups were
introduced, and an electrical machine replaced the manual apparatus.

One feature of these studies which is of interest to us is the
definition of strategy scores, based on actual patterns of choices made
by subjects. For example, an operator score is obtained by taking the
total number of cards played when the same card is being played three
or more times in succession, divided by the total number of freely
selected instances. This score is intended to reflect use of an opera-
tor strategy, in which the card played is "operating" on the card in
the windaw. For the four-element groups, a pattern score is obtained
by partitioning the table of card-pairs into three sections correspond-
ing to frequently-mentioned patterns. Runs of three or more card
combinations from the same section couht toward the pattern score (for
technical reasons, runs are counted here even if they are interrupted
by single correctly-predicted instances from other sections). There
are some logical difficulties with these strategy, score definitions--
for example, a subject may findAm the case of the Klein group that a
particular card cannot be played three times in succession without one
of the plays being a repeat of a previous play (and thus, presumably,
unnecessary). Such difficulties are reminiscent of similar problems
which have arisen with Bruner, Goodnaw, and Austin's strategy scoring
system for concept attainment tasks, discussed in Chapter VII.A
(Bruner, Goodnow, and Austin, 1956). It also seems to be the case
that the same sequence of card choices can count toward more than one
strategy score--for example, repeated plays of the,card corresponding
to the identity element in the group. Despite these difficulties, it
is striking that the main strategies seem to emerge naturally from the
underlying group structures, and in some sense are "intrinsic" to the
problems themselves.

Dienes and Jeeves compare the strategies used by subjects (as
measured by strategy scores) with the retrospective evaluations of the
subjects. Three categories of evaluations were established: operator,

pattern and memory. A subject was considered to give an operator
evaluation if he or she described the card played as somehow "acting
on" the card in the window. A subject was considered to give a pattern
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evaluation if he or she attempted to split up the combinations of cards'
played into subsets or regions. ,The memory evaluation consisted of the"
assertion that .the subject had simply memorized all of the possible
combinations. Based on these retrospective evaluations, subjects could
be classified as "pure operator," "combined operator-memory," and so
forth.

Among the main results are the following: (a) a positive relation-
ship between the subjects' evaluations and their measured strategy scores;
(b) an association of particular evaluations with success in the tasks
in the following order (from most successful to least successful): (1)

operator, (2) pattern, (3) memory; (c) a greater ability among adults
than children to give explicit evaluations; (d) a consistency in the
types of evaluations given by vhe same subject solving a twoelement
game And a four-element game; (e) more explicit evaluations.tending to
occur when the more complex task is given first than when the simpler
task is given first.

In the study of transfer effects, Dienes and jeeves define three
kinds of structural relationships which may exist between tasks:
embeddedness, overlap, and recursion (including both generalization and
particularization). These relationships are intrinsic to the group
structures which underlie the tasks--"embeddedness" refers to the
situation where one group is isomorphic to a subgroup of the other;
n overlap" to the situation where the two groups contain isomorphic sub-
groups; and "recursion" to the situation where the two groups are
generated by similar procedures (for example, cyclic groups of differ-
ent orders). The relationships are not mutually exclusive--often two
groups are related to each other in more than^one way.

A motivating theme of the transfer study is the deep-end hypothesis.

This is the conjecture that, under appropriate conditions, learning can
be accelerated on a sequence of tasks by presenting the more difficult
task first: this is analogous to learning to swim by entering the deep
end of the pool. We have already seen some confirmation of this con-
jecture in the study by Reed, Ernst and Banerji, and conflicting
results in the study by Hayes and Simon. In the present book, the
reports by Waters and by Luger tend to support the conjecture. Among
the main results of Dienes and Jeeves with respect to transfer are the
following: (a) children particularize with less difficulty than adults,
and generalize with greater difficulty; (b) children and adults both
find overlap more difficult than generalization, and embeddedness much
more difficult than generalization; (c) children are more successful
when the more difficult task is,presented first than when the less
difficult task is presented first, at least when the relationship is
that of recursion.

In a follow-up to the work by Dienes and Jeeves, Branca and Kil-
patrick (1972) employed three tasks. The first task replicates the
card game employed,by Dienes and Jeeves, having the structure of the
four-element Klein group. The second task consists of a wired board
with four light-bulbs and four switches, labelled with the names of
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planets. One bulb is lit at the beginning of the task; the next bulb
to light up depends upon the bulb previously lit and the'switch which

is thrown. The Second task also embodies the structure of the Klein

group. In the third task, both the embodiment and the structure are

ehanged. The task consists of a map of the United States on which
several cities and highways are marked. -Eighwayi Ceti be closed, open
in one direction, or open in both directions. The subject starts in
one city at the bdginning of the game, and must learn the condition

of each highway. This is done by choostng another city, and being
informed which city the subject must pans through first if the most
direct route to that city is taken.

7

Branca and Kilpatrick found that successful subjects' retrospec-
tive evaluations show more consistency than,change in passing between
the first two tasks. Thus the effect of the change of embodiment was
not significant for successful subjects' retrospective evaluations.

Howeve-, in contrast to Dienes and Jeeves' findings, subjects' retro-
spective evaluations frequently did not correspond to their actual
behaviors as measured by strategy scores. In addition, contrary to
expectations, higher operator strategy scores were associated with
more trials to solution. These discrepancies are traced by the authors
to the fact that Dienes and Jeeves' tasks are not truly "free selection"

tasks. The subjects ate constrained in the choice of which two elements
they can combine on any turn, by the fact that one card is already show-

ing in the window of the apparatus. The strategy scoring rules depend

heavily on this feature. Branca and Kilpatrick suggest that because of
this constraint, subjects are not free to implement any desired strategy;
and that in future experiments, either new scoring rules should be
established or the game should be modified to permit free choice of

both elements. This study illustrates farther how strategy scores
depend for their validity on intrinsic task structure.

We conclude this section with mention of some studies which have
examined structure variables in relation to problem difficulty. In

the domain of routine arithmetic problema, multiple linear regression
analyses of problem difficulty and laten:y of response have been
carried out (Suppes, Hyman, and Jerman, 1966; Suppes, Jerman, and
Brian, 1968). Data for these studies were obtained from computer-
assisted exercises in addition, subtraction, and multiplication
presented to elementary school children. The analysis for both the
addition and subtraction problems showed the variable NSTEPS to be
the most significant for predicting the lercent of errors and the

latency of response. This variable corresponds to the number of steps
needed to solve the problem by means of a standard algorithmic proce-
dure: it thus makes reference not only to the task, but to the method

of solution. NSTEPS is broken down into three components: TRANSFOR-
MATIONS, OPERATIONS, and MEMORY; and these were examined for order of

importance in the case of addition problems. It was found that MEMORY

ranked first, followed by TRANSFORMATION3, and lastly OPERATIONS. Other

variables included in the analysis were Eor addition problems MAGSUM
(the magnitude of the sum) and MAGSMALL (the magnitude of the smallest

addend; for subtraction problems MAGDIF (the magnitude of,the differ-
ence) and MAGSUB (the magnitude of the subtrahend).

129
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In the domain of verbal problems, it has been reported that a prob-
lem is less difficult when the data.are presented in the order in which
they are used to solve the problem than when they are presented in
ruverse order (Burns and Yonally, 1964; Rosenthal and Resnick, 1971).

Multiple linear regression studies have found the following task
structure variables to affect significantly the difficulty of verbal
problems: OPERATIONS (the minimum number of different operations
required to solve the problem correctly) and variations in which weights
are assigned to the occurrences of particular arithmetic operations;
NOMC2 (the total number of multiplication carries); and QUOT (the
number of digits in the quotient). Also included but.less importantly
were STEPS (the minimum number of steps required to solve the problem
correctly); COLC2 (a count of 1 for each column and each regrouping in
addition and subtraction); SI (a count of 1 for each displacement of
the order of operations in successive problems); and S2 (a count of 1
for each displacement between the order of operations required to solve
the problem and that given in the problem statement)(Jerman, 1971;
Loftus, 1970; Suppes, Loftus and Jerman, 1969). An extensive discus-
sion of the linear regression model has already been provided in Chapter

A number of researchers have attempted exhaustive classifications
of arithmetic problems into narrow classes, which would be homogenecuS
in the sense that if a subject could solve one problem in a class, he
or she could solve any problem in that class (Durnin, 1971; Ferguson,
1969; Gramick, 1975; Hively, Patterson and Page, 1968). Of interest
in these classifications is the use of equivalence classes of problems,
defined with reference to the path or directed graph through an
algorithm that each problem requires. Gramick, for example, formed
such equivalence classes for eight different subtraction algorithms,
five based on the "decomposition" (or "borrowing") method, and three
based on the "equal additions" method. She then formed the'mutual
intersections of these equivalence classes with each other and with a
set of "item forms" derived from those of Hively, Patterson, and Page,
to obtain 39 "problem types" for subtraction. Thus, two problems of
the same "type" required the same path through all eight algorithms,
as well as falling into the same "item form" categories. Gramick used

a diagnostic instrument based on these "types" to determine that

children in need of remedial instruction whose initial behaviors more
closely resembled the Structure of a particular algorithm, benefited
more from instruction in that algorithm than did children whose initial
behaviors were at variance with its structure.

In this hi hly abbreviated survey, many studies of importance have
been omitted. We have tried to touch on the main ideas which are cen-
tral to the present chapter. The main point of this chapter is to
develop the use of problem state7space representations as a unifying
framework, in which task structure variables such as those mentioned
above can be defined with precision, and their consequences for
problem-solving Outcomes investigated systematically.
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2. The Definition of Task Structure Variables

State-Space Analysis of Problem Structure

As defined by Nilsson, a state-space for a problem is a set of dis-
tinguishable problem configurations, called states, together with the
permitted steps from one state to another, called moves. A particular
state is designated as the initial state, and a set containing one or
more states which can be reached from the initial state by successive
moves is singled out as the set of goal states.

Let us illustrate this concept with several elementary examples of
well-known problems, and at the same time introduce certain task struc-
ture variables.

4.1 You are standing at the bank of a river with two pails.
The first holds exactly three gallons of water, the
second exactly five gallons, and the pails are not
marked for measurement in any other way. By filling
and emptying pails, or by transferring water from paiZ
to pail, find a way to carry exactly four gallons of
water away from the river.

A state of this problem can be represented by a pair of numbers,
standing for the number of gallons in the respective pails. The ini-
tial state is then the st4te (0,0); a goal state is.any state of the
form (x,4); and the ent1.r0 state-space is depicted in Figure 4.1.
Note that there are two distinct solution paths: a path of six moves
(seven states) leading tolthe goal state (3,4), and a path of eight
moves (nine states) leading to the goal state (0,4). Note also that
not every move is revers
from (1,5) to (0,5) dire
not permissible to move

The missionary-cann
(Problem 2.7). Its Ine
in Section 1 above.

le--for example, it is permissible to move
tly, Wemptying the first pail; but it is
rom (0,5) to (1,5).

bal problem was introduced in Chapter II
o study transfer of learning was discussed

4.2 Three mission4ries and three cannibals are On one bank
of a river, w th a rowboat that will, hold at most two
people. How an they cross to the other side of the
rsver, sn such a manner that the msossonarses are never
outnumbered b4i cannibals on either riverbank?

A state of thig probleM corresponds to a configuration of missionaires,
cannibals, rowboat and river. Letting M stand for missionary, C for
cannibal, * for the rowboat and : for the river, we can conveniently
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Figure 4.1 State-Space pr the Probtem of the Too Pale
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to (0,5)

to (0,0)
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to (0,0)
to (0,5)

to (3,0)

4.
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(3,1)

to (0,0) (0,4)*
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represent the initial State by the configuration (DIM1CCC*0 and the
goal state by the configuration (:MMMCCC*). From the initial state
it is permissible to move to (MMCC:MC*), (MMMC:CC*), or (MMMCC:C*); but
a move to (MCCC:MM*) is not permitted, since the cannibals would then
outnumber the missionaries three to one on the left bank of the river.

Figure 4.2 depicts the complete state-space for this problem,
which is actually quite small. Every move is reversible, and the
state-space is completely symmetrical when reversed. Figure 4.2
also includes forbidden states, which violate the problem condition
that the cannibals are not to outnumber the missionaries on either
riverbank. These forbidden states may importantly affect the problem-
solving process and the overall difficulty of the problem.

The following is another variation of the problem.

4.3 Three missionaries and three cannibals are on one bank
ofa river, with a rowboat that wiZZ hold at most two
people. Only one of the cannibals knows how to row.
Hcw can they cross to the other side of the river, in
such a manner that missionaries are never outnumbered
by cannibals on either riverbank?

This version of the missionary-cannibal problem is more complicated
than the preceding version, because of the additional condition that
only one of the cannibals knows how to row. I.et us develop the state-
space for this problem so that the similarities and.differences between
the two versions are highlighted. In Figure 4.3, the cannibal who
knows how to row is represented by C, and the other cannibals by C.
Figure 4.3 should be contrasted with Figure 4.2.

It is, of course, possible to characterize the fact that the
second version of the missionary-cannibal problem is more complex by
means of the problem statements only (i.e., by surface analysis)--
the latter problem statement contains more words, more sentences, and
one additional problem condition. However, the state-space analysis
permits a much more detailed characterization of the increased com-
plexity by means of the following task structure variables:

(a) Total number of states in the state-space: Problem 4.2 has
16 states, Problem 4.3 has 24.

(b) Length of the shortest solution path: Problem 4.2 requires
11 steps to reach the goal state from the initial statei.
while Problem 4.3 requires 13 steps.

(c) Number of bZind alleys: A blind alley is defined to be a
state from which there is no legal move except (possibly)
the reversal of the immediately preceding move. Then Prob-
lem 4.2 has only one blind alley, namely the state (MMMCC:C*)

e3
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Figure 4.2 State-Space fbr the Problem of the Missionaries and the Cannibals
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Figure 4.3 State-Spaoa far a Mare Complex Variation ofthe Missionary-
Cannibal Problem

(1gMCC:-E*) *---, (MMMCC-C-*: initial state
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t
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reached directly from the initial state, Note that we do not
count the state (C*:MMMCC) as a blind alley, since there is
no way to arrive there without first entering the goal state
(:MMMCCC*). Problem 4.3 has four blind alleys: the states
(MCC:Elie), (MMMCC*:E), and most importantly Cat(e*:CC) and

(CC:MMM*C).

(d) Number of possible first moves: three for the first version
of the problem, four for the second.

Problem complexity variables such as these may reasonably be
expected to be predictors of problem difficulty. In investigating such
4 question, it may also be of interest to define additional complexity
variables based on those mentioned above; for example:

(e) The number of goal states is equal to one for both problems.

(f) The ratio of the number of goal states to the total number of
states is 1/16 for the first problem, and 1/24 for the second.

The next set of problems further illustrates the use of structure
variables, and highlights their necessity in the description of tntrin-
sic problem complexity.

4.4a Two nickels and two dimes are placed in a row, the nickels
on the left and the dimes on the right, with a single space
between them, as shown:

NN DD

Nickels move only to the right, and dimes only to
A coin may move into the adjacent empty space, or
over one coin of the opposite kind into the empty
Show how to exchange the positions of the nickels
dimes.

the left.
may jump
space.
and the

4.4b Three nickels and three dimes are placed in a row, ...

4.4c Pour nickels and four dimes are placed in a row, ...

For these three problems, by any reasonable definitions, the values of
syntax, content and context variables will be identical. Consequently,
the obvious differences in complexity require the use of structure
variables for their quantitative characterization. Figure 4.4 depicts
the state-spaces for (a) the trivial problem of one nickel and one
dime, (b) the problem of two rackels and two dimes, and (c) the problem
of three nickels and three dimes. Each state-space is symmetrical when
the move of a nickel to the right is replaced by the corresponding move
of a dime to the left, and Figure 4.4(c) represents only a little more
than half of the state-space. Each problem thus possesses twv solution



Figure 4.4 State-Spaces Pr the nqoblems of"Exchanging Nickels and Dimas
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Figure 4.4 (continued)

(c) Three nickels and three dimes:
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Figure 4.4 jecontinuad)

(d) o ution paths
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paths which are equivalent by virtue of this symmetry. The'state-space
for Problem 4.4c is too large to diagram conveniently, but the solution
paths.are indicated in Figure 4.4(d).

There are many interesting patterns which can be found in the solu-
tion paths for these problems (Charosh, 1965; Rising, 1956). Structure
variables which emphasize the differences in complexity include the
following:

(a) Total number of states in the state-space:

1 nickel and 1 dime 6

2 nickels and 2 dimes 23

3 nickels and 3 dimes 72

(b) Length of the shortest solution path:

I nickel and 1 dime 3 steps
2 nickels and 2 dimes 8 steps
3 nickels and 3 dimes 15 steps

n nickels and n dimes (la+1)2- 1 step

(c) Number of blind alleys:

1 nickel. and 1 dime 0

2 nickels and 2 dimes 4

3 nickels and 3 dimes 13

Variables'which are the same for all versions of these problems include
the number of possible first moves (2), the number of goal states (1),
and the number of solution paths through the state-space (2),

A comment is in order here. The discussion in this chapter focuses
on the states of a representation ("nodes") and the permitted moves or
transitions between them ("arcs"). In many problems, the moves can be
characterized by means of a finite set-of operators from the set of
states into itself. More precisely, each operator possesses a domain
of states to which it is applicable, i,nd a range of successor states;
thus it is a partial function. Finding a solution path corresponds to
finding a sequence of operators which, when applied successively to the
initial state, produces a gbal state.

IL Problem 4.4, we might define the four operators "moving right
with a nickel," "moving left with a dime," "jumping right with a
'nickel," and "jumping left with a dime." Each of these operators
applies only to certain states, and is inapplicable to others. When an
oPerator-does spiky to a state, it generates a unique successor state.

. Given a sei of states and a set of operators, we can define a move
to be permitted from state si to state s2 if and only if there exists an
operator which/maps si into 82; thus we can always recover the state-
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space as a collection of configurations and permitted move's (a directed
lattice). However, different families of operators mayi *respond to
the same permitted moves among the states (for example, te states may
be grouped into domains in different ways for different families of
operators). Problems 4.4 are equivalently characterized 15r two
operators, "moving or jumping right with a nickel" and %eying or
jumping left with a dime."

Often the set of states in a problem representation is extremely
large. Nevertheless, one can fully characterize the state-space by
specifying a list of operators together with an initial state.
Operators are also essential to the characterization of algorithms
which'may be used to solve families of problems. But, except where
otherwise specified, the structure variables discussed in this chap-
ter are defined without reference to any particular choice of a set
of operators from among the possible choices.

For an N-player game, the structure 'analogous to the state-space
is the game tree or game graph. Here the opposing players typically
have disjoint sets of goal states, and the information as to which
player has the move must, if applicable, be included in the descrip-
tion of a state. A problem may then be regarded as a I-player game.
A very simple version of the well-known game of "Nim" provides an
example.

4.5 In 2-pile Nim, three matchsticks are placed in one pile,
and tvo in another. The object of the game is to be the
player to remove the last match. Each player, in turn,
may take =lay as many matchsticks as desired, but only
from one pile.

The game graph for 2-pile Nim is represented in Figure 4.5. Each
state is designated by a pair of numbers representing the matches remain-
ing in the respective piles, and by a letter, A or B, denoting the
player whose turn it is to move. Again, it is possible.to define
variables describing the complexity of the game, such as the total
number of states in the state-space, the maximum number of moves
possible in a play of the game, the number of goal states for each
player, and so forth.

We saw earlier that a concern of artificial-intelligence research
has been to develop efficient search algorithms within the state-spaces
of problems or games. However, the emphasis of this chapter is not the
development of techniques for more sophisticated computer problem
solving, but the study of problem-solving,outcomes is they are affected
by intrinsic problem structure. For this purpose, it seems worthwhile
to select problems whose intrinsic structure is sufficiently complex to
be interesting, but sufficiently simple so that the task structure
variables can be completely determined. That is, problems used for
the study of problem solving should be thoroughly analyzed prior to

1 4
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Figure 4.5 Game Graph (State-Space) for 2-pile Nim

(32;A) initial state

14.2
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the study, so that in the course of research we can gain insight into
the problem solvers, and not merely addittonal insight into the struc-
ture of the tasks. Likewise, if the teacher is-Aware of problem
structure, instruction in problem solving can be guided mord effec-
tively.

State-Space Homomorphisms and Isomorphism

Define two state-spaces (or game graphs) to be isomorphic if there
is a mapping from the states of the first onto the states'of the second,
having the following properties: (a) the mapping is bijective (a one-
to-one correspondence); (b) a move from one state to another is per-
mitted in the first state-space if and only if the corresponding move
is permitted in the second; (c) the initial state of the first state-
space is mapped onto the state of the second; and (d) a state
is a goal state in the first state-space if and only if the correspond-
ing state is a goal state in the second. Occasionally we shall speak
loosely about two state-spaces being isomorphic when only conditions
(a) and (b) are intended; for example, when a variety of initial states
or goal states are being considered.

Representations of problems and games which have isomorphic state-
spaces will have identical valueS of the structure vaiiables which were
defined above. Any algorithm which works to solve such a problem or
win such a game within one representation will have a corresponding
algorithm within the isomorphic representation.

We mentioned earlier that different problem solvers may formulate
different representations fram the same problem statement. However,
if two such representations are isomorphic, they can be said to have
the "same" structure. One individual may represent the missionary-
cannibal problem with nickels and dimes, while another uses M's and
C's as we did; the state-spaces for these representations are obviously
isomorphic. The equation 2x + 3x = 10 may be obtained by one individual
from an algebra word problem, while another individual writes 2A + 3A =
10. Again the state-spaces are isomorphic--for any equation which can
be validly obtained fram 2x + 3x = 10, there is a corresponding equa-
tion which can be validly obtained from 2A + 3A w 10. On the other
hand, a "table of values" representation f3r finding x has.no natural
correspondence of states with an algebraic representation.

Thus the valid representations of a given problem fall into equiv-
alence classes or isomorphism classes. When we speak of problem
"structure variables," we are actually dis:ussing a particular iso-
morphism class of representations of the problem. The usefulness of
structure variables depends on the fact that, for most unambiguously
stated problems, relatively few classes of representations will find
actual use by a given population of problem solvers.

A more interesting aspect of state-space isomorphisms is the fact
_-

that quite distinct problems may turn out to have isomorphic represen-
tations. Consider for example the following games.
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4.6 In the game of Number Scrabble, the integers 1, 2, ...,

9 are written on sZips of paper. The opposing players
take turns, each selectino one number for himself or
herself% Neither player may slect a number already

-taken. The goal is to obtain exactly three numbers which
add up to 15.

(Simon, 1969)

4.7 In the game of Jam, each player has a different color
pencil. The players in turn color a straight line in
the diagram below along its entire length. The object
is to obtain three lines in one's own color intersecting
at any single point.

Diagram for the game of Jam:

4.8 In the Horse Race game pictured below, there are eight horses
on the starting line, and nine cards to be picked one at a
time by the two players. Each card has the numbers of
several horses. When a player picks a card, the following
things happen: if a horgio0 unowned, that player takes
possession of it and advances it one. If a horse is already
owned by that players, it advances one. If a horse is owned
by the player's opponent, it is disqualified. The first

player to bring home a horse wins.

Cards f'or the Horse Race game: a. 1

b. 4

c, 2

Diagram: Horse #

1 2 3

START

FTNTSH

3 6 a% 3 7 g. 2 3 8

6 e. 1 24 7 h. 4 8

5 6 j% 5 7 i. 1 5 8

4 5 6 7 8

I I
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In the diagram, for purposes of illustration, card "e"
has been played by the first player, and 'card "17" by
the second.

The three preceding games, which differ from each other radically
in syntax, content, and context, are all isomorphic in the sense of
state-space struciture to the familiar game of tick-tack-toe. The
isomorphism of Number Scrabble with tick-tack-toe is illustrated by
the well-known magic square in Figure 4.6(a)1 The game of Jam is
based on the projective dual of tick-tack-toe, in which points corres-
pond to lines and lines to points; the correspondence with tick-tack-
toe is noted in Figure 4.6(b). Finally, each card in the Horse Race
game corresponds to a tick-tack-toe square, and each horse to a straight
line. The cards have been constructed so that each horse appears on
exactly three cards; the correspondence with tick-tack-toe is tabulated
in Figure 4.6(0).

In Chapte I, Figure 1.1, it is noted that problem solving may
involve the us of reZated problem statements or problem representa-
tions. Isoiuoxphism of problem representationi is the closest possible
relationship from the standpoint of structure. Solving a problem iso-
morphic to a iven problem may be easier due to differences in syntax,
content, or c ntext, but it will be no easier in structure (and no more
difficult). ext we consider less stringent structural relationships
between probems.

A gener lization of the Idea of state...space isomorphism is that
of state-space homomorphism. The concept of homomorphic problems has
been approa4hed in different ways; the development here is the author's
own.

SuppoSe that we have two state-spaces S and T. A hamomorphism is

i

a mapping from S into T, not necessarily one-to-one snd'not necessar-
ily onto, thich satisfies the following. if sl and s2 are states in S
such that /there is a legal move from si tl m2, then either there is a
legal move in T from f(s) to f(s2), or eise f(s1) f(s2). A homo-
morphism is goal-presermng if it maps goal states of S into goal
states of1 T. We shall now define some special kinds of homomorphimms
and look ;at Some examples.

i

I

(a) For an injective homomorphism, the mapping f from the first
state-sp ce to the second is required to be one-to-one. For example,
conside the game of 2-pile Nim in which the initial state has two
matchst cks in each pile (Figure 4.7). The states of this game may
obvious

11
y be placed into one-to-one correspondence with a subset of

the states in the more complexlame which is generated by an initial
state laving more matchsticks; more piles, or both. (Compare Figure
4.7 with Figure 4.5.) Such a correspondence defines an injective
homomoiphism.
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Figure 4.6 Games Isomorphic to Tick-tack-toe

(a) Magic square illustrating the isomorphism with Number Scrabble:

(b) Correspondence between points of Jam and lines of tick-tack-toe:

(c) "Horse Race" cards correspond to tick-tack-toe squares; horses
to tick-tack-toe lines.
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Figure 4.7 A Symmetrical Subspace of the 2-pile Nim State-Space

(13;B)

(02;A)
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(01;B) (11;B)

(01;A) (00;A) (10;A)

B's soal

(00;B)

A's goal

1 II

1
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As a second example, consider the nickel-dime prdblems i1lu.trated
in Figure 4.4. The states for the problem of one nickel and oe dime
may be mapped into the states for the problem of two nickels a d two
dim"... by adding a nickel to the left and a dime to the right o any

given configuration. Likewise the states for the problem of
nickels and two dimes may be mapped into the states for the pro lem
of three nickela and three dimes, and so forth. Each of these
mappings defines in injective homomorphism. Note that in this eample,
the goal State for the less complex problem is not mapped into t e goal
state for the more complex problem, as it was for the case of the Nim
games. Furthermore, the goal state for the less complex problem s

not even mapped into a state which is on a solution path for the more
complex problem; it is mapped into a "blind alley" state. Thus these
are not goal-preserving homomorphisms.

(b) We define a surjective hamomorphism to be one for which the
mapping f from the first state-space to the second is an onto or our-
jective mapping. That is, !or every state i in the second state-space
T, there exists at least one state s in the first state-space S, such
that f(s) t. 'For example, consider the two versions of the missionary-
cannibal problem illustrated in Figures 4.2 and 4.3. Define a mapping f
from a state in FPgure 4.3 to a state in Figure 4.2 which associates to
every state in the mqre complex state-space the state obtained by
removing the bar above the C. For instance,the two states (MC:MMCC*)
and (MC:MMCC*) are both mapOed into (MC:MMCC*) by f. The mapping f is
thus in general many-to-one; but it clearly preserves the structure of
legal moves in the sense that if a move is legal between two states in
Figure 4.3, en it is legal between the corresponding states in Figure
4.2. This is a surjective homomorphism because every state in Figure
4.2 has at least one state in Figure 4.3 associated with it by the
mapping f.

Given initially the more complex statement of the problem, Problem
4.3, one might decide tosolve first the "related" problem obtained by
neglecting the condition that only one cannibal knows how to row,
Problem 4.2.. The problem statements are related in that one condition
has been removed. The goal-preserving surjective homomorphism des-
cribed above characterizes the "relatedness" of the problem structures
which results.%

Next consider the "Jealous Husbands" problem discussed in Section
I (Reed, Ernst, and Banerji, 1974).

4.9 Three husbands and three wives are on one bank of a
river, with a rowboat that will hold at most two people.
How can they cross to the other side of the river, in
such a manner that no wift is ever in the presence of a
man other than her 'husband on either riverbank, unless
her husband is also present?
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We have reworded the problem in order to highlight the parallels and
differences with Problem 4.2. The three husbands correspond to the
three missionaries and the three wives to the three canuibals. -How-

ever, interpretation of the condition that no wife be left with a man
other than her husband, unless her husband is also present, seems to
require the problem solver to keep track of the individual identities
of the husbands and the wivess.----Such a representation of 6i problem
leads to a fairly complex state-space, a small portion of which is
'depicted in Figure 4.8. In this figure the husbands have been
labelled Hj, H2, H3, and their respective wives Wi, W2, W3.

Define a mapping f from a state in Figure 4.8 to a state in
Figure 4.2 which associates to every state in the more complex state-
space the state obtained by removing all the.subscripts, and
relabelling H by M and W by C. It is evident that f defines a many-
to-one correspondence of the states in the two representations, and
that every state in Figure 4.2 has at least one state in Figure 4.8
to which it is associated by f. To deduce that f is a homomorphism
(i.e., that it preserves the structure of legal moves), it is necessary
to reason that if no wife is left with a man other than her husband
unless her husband is also present, then the wives can never outnumber
the husbands on either riverbank. Thus if a move is legal in Problem

4.9, the corresponding move will be legal in Problem 4.2. Note that
the converse of this statement is false--it is quite possible for a
proposed move to be illegal in the Jealous Husbands problem, with the
corresponding move in the missicinary-cannibal problem perfectly legal.
Again, we have a goal-preserving surjective homomorphism which charac-
terizes the "relatedness" between the two problems.

Thus far we have observed that an injective homomorehism allows
us to view one problem or game as a subproblem or subgame of another;
while a surjertive homomorphism allows us to describe the relation-
ship of kproblem with a related problem obtained by disregarding some
attribute of the states of the original problem.

a

Finally we shall define a less stringent notion of "relatedness"
of problem structure than that of a homomorphism. Subose that we
have two state-spaces S gpd T. A weak homomorphism will be i,mapping
f from S into T, not necessarily one-to-one or onto, which satisfies
the following: if si and s2 are states in S such that there is a
legal move from si to s2, then either f(s1) f(s2), or there exists a
sequence of legal moves.in T from f(s1) to f(s) such that the inter-
mediate states are not in the image of f. That is, there is a legal

path in T given by (f(s1), tl, tn, f(s2)), and there are no states

in S mapped into ti,. .., tn. It is clear that every homomorphism is a
weak homomcrphism, since Mai), f(s2)) qualifies as a path in T having
no intermediate states. Furthermore, a weak homomorphism that is sur-
jective is also a homomorphism. A weak homomorphism from S into T
which is injective will be called an embedding of S into T.

11 9
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Figure 4.8 A Portion of the State-Space for the "Jealous ftsbande Problem

forbicWen moves

(111H2H3W1W2:W34)41.--.6 (H1H2H3W1W2W3*:) initial state (H1H2W1W2W3:143*)

(H1H3W1W2W3:H2*)
(H1H2H3W1W3:W2*) (H2H3W1W2W3:H1*)

(H1W1W2W3:H2H3*)

(H2W1W2W3:141112!_31--------

(H3W1W2W3:H1142*)
(H2H3WIW3:H1W2*)
(H2H3W1W2:H1W3*)
(H1H3W2W3:H2141*)

(H1H3W1W2:H2W3*)
(H1H2W2143:H3W1*)

(H1H2W1W3:H3W2*)

----) (H1H2W1W2W3*:113)

----) (H1H3W1W2W3*:H2)

(H1H2H3W2W3:W1 )

-(H1H2H3141:W2143

(H1H2H3W2:W1W3 )

(H1H2H3W3:W1W2*)

(H1H2W1W2:H3W3*)

(H1113W1W3:H2W2 )

(H2H3W2W3:H1W1 )

(H1H2H3W1W2*:W3)

(H1H2H3W1W3*:W2)

(H1H2H3W2W3*:W1)

----? (P7H3W1W2W3*:H1)
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The concept of an embedding of one problem representation into
another allows us to classify further the alternative representations
which may be.constructed foF a given problem statement. For example,
it is commonly asserted that the state-space in Figure 4.2 "is" the
state-space for the missionary-cannibal problem; we have already noted
that such an assertitin must be interpreted as referring to a class of
isoMorphic state-spaces. However, there is still greater flexibility
in specifying the state-space, even without the device of including
the "illegal states" in Figure 4.2. For example, we may choose to
record separately the intermediate configurations in which one or two
missionaries or cannibals is in.the rowboat, partway across the river. ,

In this more complex representation of the missionary-cannibal problem,
there are not only many more states, but there are many more blind
alleys than in Figure 4.2. For example, the path from the initial
state (MMMCCC*0 to (MMCC:MC*)fmay now be 'represented by the tirkee ,

states (KKMCCC*//), (MMCC/MC*/), mccumr*), where the two slashes
.stand for the twn banks of the river. From the state (MIMCC:MC*) there
were formerly no legal "blind alley" moves; now, however, the move from
CKMCC/CMC*) to (MMCC/C*AI) is still legal and represents a blind alley,
since if the cannibal lands on the left bank, the conditions of the.
problem are violated. Some, but not all, of the "forbidden moves" in
Figure 4.2 now have legal intermediate "blind alley" states heading
towards them.

In short, there is an embedding of the state-space in Figure.4.2
in the more complex state-space, and the latter is certainly an equally
valid representation of the problem structure.

This example is not merely a trick; it illustrates a fundamental
issue in the definition of structure variables such as the number of
steps or the number of blind alleys. Indeed, one could carry forward
the expansion of the missionary-cannibal state-space still further.
Suppose that we define a state of the missionary-cannibal problem to
be a configuration of missionaries and cannibals, rowboat and river,
together with the label t for "tested" or u for "untested." Untested
states have not been examined with respect to the condition that canni-
bals are not to outnumber missionaries, and are therefore legal--however,
the only move permitted from an untested state is to test it. From a
tested state, one is only permitted to move to an untested state. In
this expanded state-space, the "forbidden moves" in Figure 4.2 have
become legal, "untested" states. There is an embedding of the state-
space in Figure 4.2 in the expanded state-space which assigns to each
original state the corresponding "tested" configuration.

We see that given a problem statement, it will often be possible
to construct alternate state-spaces which are accurate representations
of the problem, and which are not isomorphic. Typically they will be
related to each other by means of an embedding, and will have differ-
ent values of important structure variables. This is a more precise
characterization of the difficulty which we noted at the beginning of
this chapter in specifying the npmber of steps needed to pass from
the equation 2x + 3x 10 to the equation 5x . 10.
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It is not meaningful, then, to specify structure variables in au
absolute sense; that is, we cannbt say "the number of steps needed to
solve this problem is n." However, we can specify the values of
structure variables in a specified representation of a problem. This
permits us to compare problems having different values of structure
variables, as long as we arg consistent in our choice of representa-
tion for the problems.

Symmetries and Subspace Decompositions
4,

Utilization of intrinsic problem symmetry can often contribute to
insightful problem solving (Goldin and McClintock, in press). Like-
wise, the decomposition of a problem into subproblems through the
selection of subgoals can be an effective procedure. Here we shall
define task structure variables associated with problem symmetries
and subproblem decompositions. These characteristics of task struc-
ture may be thought of as representing the potential for use af
appropriate heuristic processes.

An automorphism of a problem is an isomorphism of the problem
state-space onto itself. Such an autemorphism is also called a
symmetry transformation of the problem representation. For example,
automorphisms of the tick-tack-toe game tree may be obtained by
rotating the tick-tack-toe grid by 1/4, 1/2, or 3/4 of a complete
turn, or by reflecting the grid vertically, horizontally, or diagonally
(see Figure 4.9). Corresponding automorphisms may therefore be
obtained for the representations of all of fhe games isomorphic to
tick-tack-toe.

The set of symmetry transformations of a system always forms a
mathematical group. Any ordered pair of symmetry transformations may
be performed in succession to obtain a third symmetry transformation,
thus defining an associative binary operation. The identity trans-
formation is always included as a symmetry transformation by conven-
tion, and for every symmetry transformation, there exists the
inverse transformation which returns the system to its initial
configuration. The symmetry transformations of a state-space thus
form a group which we shall call the symmetry group oT the problem
or game representation.

For any problem or game, we may now consider as a new task varia-
ble the number of symmetry transformations of a representat/.on; i.e.,
the order of the symmetry group.

Many of the problems and games already discur.ded display some
sort of state-space symmetry; for example, the nickel-dime problems
(Problems 4.4a-c) possess bilateral symmetry (symmetry group of order
2), as does the Nim subgame depicted in Flgure 4.7. In tick-tack-toe,
the symmetry group of the state-space is of order eight, and corres-
ponds to the geometric symmetry of the tick-tack-toe grid; while in

1 54
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Figure 4.9 Tick-tack-toe States Equivalent by Rotation and Reflection Symmetry

+IR

X

Figure 4.10 3-Pile Nim States Equivalent by Permutation Symmetry

(123;A) (132;A)

(231;A) (32I;A)

1
(312;A) (213;A) cyclic
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Number Scrabble, the embodiment of the game'is such as to conceal the
symmety which is in fact present. Thus problem symmetry may be more
or les0 overt, Idepending upon the problem embodiment.

Whenever a state-space possesses symmetry, it is possible to
construct a smaller, reduced state-space in which states equivalent
by 0.rtue of symmetry transformations have.been identified with each

, other. To develop this concept precisely, let a be a state in a given
state-space S, and let G be the symmetry group of S. Consider the set
of all states which can be obtained by applying elements of G to the
fixed state s; this set, denoted Gs, will be called the orbit of s
under the action of G. Two states in S will be called equivalent
modulo G if they are in the same orbit under the action of G. -The
orbits in the state-space form mutually disjoint equivalence classes
of states.

For example, the eight tick-tack-toe states in Figure 4.9 all
belong to the same orbit. Of course some orbits in the tick-tack-toe
state-space contain fewer than eight states. The state with X in the
center square, for example, the other squares being empty, stands
alone in its equivalence class.

Given a state-space S having a symmetry group G, a new and smaller
state-space S' may be constructed as follows. Let each equivalence
class in S (modulo G) be a state in S'; let the initial state in S'
be the equivalence class containing the initial state in S, and let
the goal state(s) in S' be the equivalence class(es) containing the
goal state(s) in S. Define a move to be permitted from one state of
S' to another state of S' if and only ii there exists a state slin
the first equivalence class and a state s2 in the second equivalence
class, such that (sl,s2) is a permitted move in S.

The state-space S' thus. obtained will be said to have been reduced
modulo the symmetry group G. It may sometimes be convenient to
represent S' by selecting one representative state from each orbit
in S.

By way of illustration consider the following generalization of
the game of Nim.

4.10 In the game of n-pile Nim, al matchsticks are placed
in the first pile, a2 in the second pile, and so forth,
with an matchsticks in the nth piZe. The object of the
game is to be the player to remove the last match. Each
player, in turn, may take away as many matchsticks as
desired, but only from one piZe.

The state-space for n-pile Nim may be mapped by means of an injective
homomorphism into a state-space possessing n-fold permutation symmetry.
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Let m be the;maximum of all of the ai for i .m 1, 2, ..., n; let the
state-space Consist of all configurations which can be reached by
applying legal'moves to the state (mm...m;A).. Any permutation of
the n piles now defines an automorphism of this state-space. Figure
4.10, for example, illustrates six 3-pile Nim states which are equiv-
alent by permutation symmetry. In depicting the reduced state-space,
only one of these states--for instance, the state (123;A)laight be
used to stand for the equivalence class of the six states.

In Figure 4.11 the symmetrical subspace of the 2-pile Nim state-
space, which was pictured in Figure 4.7, is reduced modulo the exchange
symmetry. Now the state (21;A) stands for the equivalence class con-
taining (21;A) and (12;A). Note the legal move in Figure 4.11 from
(21;A) to (10;B), which is present because the move from (21;A) to
(01;B) is legal in Figure 4.7.

Given a state-space S having a symmetry group G, and letting S'
be the reduced state7space, define the mapping f from S to S' which
assigns to each staie in S its corresponding equivalence class in S'.
f defines a surjective homomorphism from S onto.S'. Thus there is a
surjective homomorphism from Figure 4.7 onto Figure 4.11.

Returning to ihe question of alternative representations for a
given problem statement, we remark that when symmetry is present, a
choice must be made--to incorporate the symmetry from the start by
utilizing a reduced state-space, or to neglect the symmetry by treat.-
ing states equivalent by symmetry as distinct states. From the
standpoint of efficient problem-solving, it may be desirable to
incorporate as much of the symmetry as possible. However, many
problem solvers will not recognize all of the symmetry which is in
fact present, at least at the outset of problem solving. Thus from
the standpoint of defining and investigating task structure variables,
it is desirable to characterize the expanded state-space, the symmetry
group, and the state-space reduced modulo the symmetry group.

The symmetry group G of a state-space may have various subgroups,
each of which contains only certain speicified symmetry transforma-

tions; Then, for any subgroup H of G, it will be possible to define
S",,the state-space reduction of S modulo H. S" will be a state-space
intermediate in size between S and S', into which some but not all of
the available symmetry has been incorporated.

Finally let us remark that certain problem representations
Tossess forward-backward symmetry. Given a problem with a single
goal state, one may construct the inverted problem as follows: (a)

the goal of the original problem becomes the initial configuration
of the inverted problem; (b) the initial configuration of the origi-
nal problem becomes the goal of the inverted problem; and (c) given
the two problem configurations si and 82, a move is permitted from si
to 82 in the inverted problem if and only if the rules of the original
problem permit a move from 82 to si. We note, however, that for a



Figure 4.11 Reduced .5mmetrical SUbspace of the 2-Pije Nim State-Space
(cumpaw with Pig. 4.7)

initial
state
(22;B)

(21;A) (20;A)

(11;B) (20;B) (10;B)

(00;A) (10;A)
B's goal

(00;B)
A's goal
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configuration to be a state in the stater.space of the inverted prob-
lem, it is neither necessary nor sufficient that it be a state in the
state-space of the original problem, The configuration might not be
reachable from the initial state of the original problem, although
reachable by "working backward" from the goal atate of the original
problem. A problem is said to possess forwardi-backward symmetry when
the state-space of the inverted problem is isomorphic to that of the
original problem.

Many of the examples that we have mentioned thus far have forward-
backward symmetry. In the various versions of the missionary-cannibal
problem (Figures 4.2 and 4.3) and the Jealous Husbands problem (Figure
4.8), the problem statements are such that any legal move is reversi-
ble. The state-space for the inverted problem is the same set of
states as the state-space for the original problem. The forward-
backward symmetry is apparent in the state-space diagram, and
corresponds simply to exchanging the two banks of the river in the
problem statement. In the nickel-dime problems (Figure 4,4), the
permitted moves are not reversible. With the exception of Figure
4.4(a)--the problem of one nickel and one ci:Lme--the state-space
diagrams do not display forward-backward synmetry. Nevertheless, when
one constructs the state-space for the inverted problem, it is isomor-
phic to the state-space for the original problem; it includes configu-
rations which are not present in Figure 4.4 because they cannot be
reached from the initial state in Figure 4.4, and it excludes dther
configurations which are present in Figure 4.4. The forward-backward
symmetry corresponds to exchanging "dimes" and "nickels" in the original
problem statements.

The problem of the two pails (Figure 4.1) is an example of a prob-
lem which does not possess forward-backward symmetry,

We have seen that one way of reducing the state-space for a prob-
lem or game, and establishing equivalence classes of states, is with
respect to a group of symmetry transformations. A second way of
reducing the state-space is with resliect to its infrastructure of sub-
problem or subgame state-spaces. A subspace of a state-space S is a
subset T of S, together with the moves which are permitted from one
state in T to another state in T. From time to tine we may designate
a state in T as the "initial" state for the subspace, and a particular
set of states in T as "subgoal" states.

Figure 4.7 illustrates a subspace of-the 2-Oile Nim state-space.
In fact, given a homomorphism f from a state-space R into a state-space
S, define the image of the homomorphism to be the set of all states s
in S for which there is at least one state r in R such that f(r) = s.
Then the hnage of the homomorphism is a subspace T of S. The initial
state in T may be characterized as the image of the initial state in R,
and the set of subgoal states in T as the image of the set of goal
states in R.
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An interesting situation arises when the state-space of a problem
can be partitioned into mutually disjoint subspaces, in such a manner
that for any pair of subspaces, there is at most oneopermitted move
between a state in one subspace and a state in the pater. An example

is provided by the wel1.4tnown Tower of Hanoi problem..

4.11 Four concentric rings (Labeled 2,2,3,4 respectively)
are placed in order of size, the smallest at the toP,
on the first of three pegs (labeled A,B,C), as in the

diagram below.

1.

2.

3.

4.

The object of the problem is to transfer all of .che
rings from peg A to peg C in a minimum number of'
moves. Only one ring may be moved at a time, and no
Larger ring may be placed above a smaller one on any
peg.

Figure 4.12(a) depicts a state-space for the Tower of Hanoi problem.
In Figure 4.12(b)-(c), the state-space has been partitioned into
mutually disjoint subspaces in variousmays. .

Given a state-space S which has been thus partitioned, a new and
simpler state-space S' may be defined by considering each subspace of
S to be a state in its own right in 5'. The initial state in S' will
be the subspace containing the initial state of S, amd a goal state in
S' is any subspace containing a goal state of S. A move is permitted
from one state of S' to another state of S' if and only if there exists
a state sl of S in the first subspace, and a state s2 of S in the
second subspace such that the move (s1,s2) is permitted in S.

The state-space S' obtained in this fashion is said to have been
reduced modulo the subspace decomposition of S. S' may sometimes be
conveniently represented by selecting a representative state from each
subspace of S.

In the Tower of Hanoi problem, a "1-ring subspace" is isomorphic
to the task of transferring a single ring from one post to another; a
"2-ring subspace" is isomorphic to the task of transferring two rings
from one post to another; and so forth. In Figure 4.12(b), we see
that when the state-space for the 4-ring problem is partitioned intu
2-ring subspaces, the reduced state-space is isomorphic to a 2-ring
Tower of Hanoi state-space, Likewise, when the 4-ring state-space
is partitioned into 3-ring subspaces, the reduced state-space is iso-
morphic to a 1-ring Tower of Hanoi state-space; and when the 4-ring
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isure 4.12 State-gpaoe Representation for the 4-Ring Tower of Hanoi
Problem, and its Partitioning into SUbspaces

(a) The Tower of Hanoi state-space. The four letters labelling
a state refer to the respective pegs on which the four rings
are located.

. AAAA (start)
CAAA . . BAAA

. . BCAA
BRAA . . . . CCAA

. CCBA

CCCA BBBA
. BBBC

AACB . . . . BBCB 4 0 AABC

BBBB CCCC (goal)

(b) Decomposition of the 4-ring state-space into 2-ring subspaces.

a 2-ring subspace



Figure 4.12 (continued)

(c) Decomposition of the 4-ring state-space into 1-ring and 3-ring
subspaces.

a 3-ring subspace

a 1-ring
subspace
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state-apace is partitioned into 1-ring subspaces, the reduced state-
space is isomorphic to a 3-ring state-space (Figure 14,12(c)/).

The Tower of Hanoi problem has the additional interesting feature
that in the subspace decompositions illustrated, all of the subspaces
pre themselves mutually-isomorphic in each decomposition.,

The reduction of a state-space with respect to a syMmetry group
G, and the reduction with respect to a "subspace" decompOsition, are
similar to each other in that both reductions involve the establish-
ment of equivalence classes of states. For the case ofla symmetry
group, two states are equivalent if they are conjugate by virtue of
a symmetry automorphism of the state-space; for the case of a sub-
space decomposition, two states are equivalent if theylare contained
within the same subspace. We hive shown for each type/of reduction
how to obtain a smaller state-space S' from the original state-space
S. For reduction moduZo a subspace decomposition, as for reduction
modulo a symmetry group, there always existeva surjective homomorphism
from S onto S' which is obtained by mapping each state in S to the
equivalence class in 5' which contains it.

We have spent a considerable portion of this chapter developing
the concepts of state-space homomorphisms and isomorphisms, and
symmetries and subspace decompositions, purely from the point of
view of the formal analysis of intrinsic task structure. Let us .

digress at this point, and discuss the psychological meaning that
these features may potentially have for the problem solver.

Consider first the case of a particular subproblem of a given
problem. Associated with the subproblem is a subSpace of the prob-
lem state-space. We may imagine that during the course of problem
solving, a problem solver might succeed in solving the subproblem,
so that every time it is encountered, it is solved directly and
nearly automatically. Perhaps a special name is even conferred on
the subproblem, which suggests the use of a particular solution
algorithm. In some sense the subproblem is abstracted from the
main problem by the problem solver, and "chunked" as a single entity.
This is suggestive of the process which Krutetskii (1969, 1976) calls
II curtailment."

Selection of a subgoal (or specification pf a set of subgoals)
by the problem solver establishes a subproble* of the main problem.
Thus we might envision an ideal sequence of es,fents, in which the
problem solver (1) establishes a subgoal, (2)Iso3.ves the correspond-
ing subproblem, and (3) "chunks" the solution algorithm to the
subproblem. Conceptually, the latter step c rresponds to replacing
the subspace of the state-space by a single tate, without altering
the overall network structure of the state-space (except, of course,
for the elimination of the moves that are internal to the subspace).

If the state-space can be partitioned into eubspaces, with each
subspace corresponding to a particular subproblem (as with the Tower
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of Hanoi), we may anticiptte the possibility of Otages during problem
solving, corresponding to the solution of partiCular subproblimx and
the curtailment of thinking with respect to thOSe subproblems. When
the state-space is partitioned into isomorphic subspaces, there may
exist stages corresponding to the solution of Oarticular isomorphism
classes of subproblems.-

Next consider the case of a problem for lehich the state.space
possesses symmetry. We may suppose that at the outset, a problem
solver might regard the various problem stat s or configurations as
distinct from each other, even though they iny be symmetrically conju-
gate (and thus equivalent as far.as the prob em structure is concerned).
During the course of problem solving, such 9tates may come to be recog-
nized as equivalent, causing perhaps a profOund change in the problem
solver's "perception" of the problem,

Recognition of the symmetry which is resent in a problem repre-
sentation is often a key to insightfW pro lem solving. Thus problem
state-spaces which possess such symmetry ffer the opportunity to study

i
the process whereby this kind of insight ccurs. Again we have the
possibility of stages corresponding to th recognition of particular
features of the problem symmetry (subgrouts of the problem symmetry
group), and curtailment of thinking when! y itates are considered "the
same" when they are equivalent by virtue'of a symmetry transformation.

Problems with isomorphic or homomorphic representations present
the opportunity to study transfer of learning from one problem-solving
experience to another. The process whereby problem solvers come to
recognize analogy of problem structure corresponds to the component
of mathematical ability Krutetskii calls "generalization."

Comparison of a nroblem representation with a representation of
the inverse problem provides the structural framework necessary for
the study of "reversibility of thinking," a third component of mathe-
matical ability in Krutetskii's model. For problems having forward-
backward symmetry, any algorithm or strategy which solves the inverse
problem has a corresponding algorithm or strategy which solves the
original problem; thus the inverse problem is no easier than the
original. Nevertheless, problem solvers who can carry out a certain
strategy "working forward," and then carry out the corresponding
strategy "working backward," may be able to "connect" theSe paths,
thus arriving at a solution by different means than those who work
exclusively in,one direction. At the other extreme, problems with
representations which in the "forward" direction have a multiplicity
of branches, and in the "backward" direction have very few branches,
possess the structural characteristics for "working backward" to be
more successful than "working forward."

To sum up, as examples of the usefulness of state-space analysis,
we have seen that it permits us to characterize with some rigor the
problem characteristics which facilitate the study of three of



Table 4.2 Stkucture Variables Defined! with Reference to State-Spaces

Numerical variables describing_a problem state-space S

Total number of states
Length of the shortest solution path
Number of blind alleys
Number of possible first moves
Number of goal states
Ratio of the number of goal states to the total number of states
Number of elements in the symmetry group G

Non-numerical structural characteristics of the state-space 5

Equivalence classes of states under the action oPihe symmetry group C
Subgroups of the symmetry group G
Subspace decompositions.of the state-space (particularly, decomposition
into mutually isomorphic subspaces)

Forward-backward symmetry within the state-space S

Relationships to other problem state-spaces T

Existence of an isomorphism between S and T
Existence of a homomorphism between S and T; th particular:
An injective homomorphism from T to S (subproblem of S)
A surjective homomorphism from S to T (reduction of S)

Characteristics of the inverse problem of S (particularly, isomorphism
of S with its inverse problem)
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Krutetskii's components of mathematical abilitrcurtailment, general-
ization, and reversibility of thinking (see Chapter 1, Table 1.3). In

Chapter ICA, Luger explores the possibilities for using problems having

some of these characteristics in teaching, in order to foster the develop-

ment of mathematical ability.

Table 4.2 summarizes the structure 4ariables which have been
defined with reference to state-spaces.

Algorithms and Strategies

An algorithm is a well-defined procedure for solving a class of
problems in a given representation. Algorithmic analysis may be con-
sidered an alternative to state-space analysis for the definition of
task structure variables. However,, the two approaches are quite
compatible, since an algorithm may be described with reference to the
set of operators on a state-space. Thus an algorithm will accept the
initial state as input, and, by successive application of operators,
will generate a sequence of successor states until a goal state is
reached. In this manner, given an initial state, an algorithm defines
a unique patb through the state-space. We may imaginethe path gene-
rated by an algorithm as an "overlay" on the collection of problem
states, with alternative algorithms generating possibly distinct
solution paths.

Choice of a particular algorithm permits the comparison of prob-
lems with respect to task structure variables'that are defined with
respect to the algorithm. These include: (a) the number of steps in
the solution path generated by the algorithm; (b) the number of times
any particular loop in the algorithm is traversed; (c) the number of
times any particular branch point in the algorithm is crossed; and (d)
the number of times an* particular operator is called for by the
algorithm. Structure variables defined with respect to al4gorithms seem
to make the most sensejn highly routinized, computati9haYtasks, where
standard algorithms'are widelr tatight to students. Their definition
depends not only upon the choice of a mathematical representation for
a problem, but also upon the.choice of a method of solution within the

,

representation.

Let us now approach the concept of a strategy as a geneialization'
of an algorithm. A strategy is any procedure yhich narrows the set pf

,
possible moves, withoUt necessarily singling out a unique move. .Thus,
while an-algorithm is defined with reference to operators which are
partiallunctions on the state-space, a strategy may be defined with
reference to partial relations on the staterspace. &partial relation
maps each state in its domain into a set of possible successor states.
Thus a strategy does not necessarily lead to a unique path-within the
state-space. Instead it generates a set of possible paths, which may
or may not include' a solution path.
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This definition of the term "strategy" is quite consistent with
ordinary usage. In chess, for example, a strategy associated with a
particular opening variation might be, "seek to eibtain control of an

open Queen's Bishop file." Such a strategy does not single out a
unique move or sequence of moves, but it is considerably more precise

a (and more problem-specific) than a heuristic process as the term is
used in this book by McClintock and by Schoenfeld. A strategy
establishes a well-defined subset of moves for consideration on a
particular turn. Sometimes a heuristic process will suggest a
particular solution strategy (or algorithm) in a particular situation.

In our sense of the word, a strategy is no more vague than an
algorithm, when it is well-defined. It merely allows for a set of
possible continuations, rather than a single continuation, at each
juncture. To be well-defined; the set of possible moves must be
unambiguously described for any state to which the strategy is
applicable. Our use of the term "strategy" is similar to the use
by Landa (1976a) of the term "semi-algorithm" (p. 37).

Sometimes a problem is susceptible to an easily-described
strategy, when an attempt to write a detailed algorithm leads to
a cumbersome and artificially complicated procedure. For example,

consider a routine problem involving two independent simultaneous
linear equations in two unknowns, X and Y, with non-zero coefficients.
The procedure, "solve for Y in the second equation and substitute in
the first equation; then solve for X," represents the outline of an
algorithm; but it may not generate the simplest solution. In contrast,

the procedure "solve fo7 one of the variable& in one of the equations
and substitute in the other equation; then solve for the other varia-
ble," outlines a strategy. The first procedure, when sufficiently
elaborated, will define a unique sequence of steps; the second pro-
cedure will define four possible sequences. However, if we attempt
to turn the second procedure into an algorithm by spelling out in
precise detail how to select the variable to be solved for first, and
the equation in wfach it is to be solved for, a cumbersome result
emerges which is contrary to the spirit of the strategy.

Just as task structure variables may be defined with respect to
a particular algorithm, they may be defined with respect to a partic-
ular strategy. For example one may compare problems with respect to
(a) their susceptibility to solution by means of a particular stra-
tegy, (b) the minimum number of steps in a solution path generated
by a particular strategy, and so forth.

If two state-spaces-are isomorphic, any strategy which may be
defined in one state-space has a corresponding strategy which may be
defined in the other.

1 Us
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Structure Vatriabtee in.Routine plobleme

Up to now the problem examples we have taken--the problem of the
two pails, the missionaries and cannibals, the Tower of Hanoi, etc.--
have been principally,of the non-routine variety. Such problems have
two features which make the stateTspace analysis particularly easy.
First, the rules of procedure stated in the problems are few, making
it possible to identify a small number of operators which characterize
the state-space. Frequently the state-space itself is small enough so
that it can be fully displayed. Swcondly, the states themselves
correspond to configurations of physical objects described in the
problem statements--pails of water, rings and posts, and so forth.
When we turn to routine problems in, say, elementary algebra, these
features are no longer present. Nevertheless, a state-space aLilysis
is possible which does not differ in principle from the kind we have
already performed.

In routine prOblem solving, which includes most of the problem-
solving ilAstruction offered in schools, there usually exists a
standard representation which is taught to the students, and which it
is expected they will use in writing solutions. Such a representatioa,
then, should be used as far as possible in defining the task structure
variables. It may also be valuable to consider representationsexpanded
from the standard representation; i.e., in which the standard represen-
tation can be embedded, or from which the standard representation can
be obtailked by state-spaLc reduction.

A routine word problem in elementary algebra can be translated
into a representation by means of finitely many equations in linitely
many unknowns. It is such a configuration of sywbols which we shall
treat as a state in a state-spa,7e, for the purpose of studying struc-
tdre variables. This is not tr ny the importance of other (non-
standard) representations which alight also be worthy of examination.

For example, consider a problem such as the following.

4.12 Seven children each have the same number of marbles.
In additi,on there are eleven marbles in a bag. All
together, there are 102 marbles. How many marbles
does each cl7ild have?

The problem might be translated into the equation "7x 11 102."
This configuration of symbols then becomes the initial state for the
problem state-space. In other words, the state-space analysis begins
after the translation has been completed, as suggested by Figure 1.1
in Chapter I. The goal state for this problem is any state of the
form "X -L [numeral]" which can be obtained from the initial state by
"legal moves."

I Go
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The context oT the problem ("marbles") may suggest a
which is a positive integer, encouraging the use of (non-
"guess-and-check" Procedures. These procedures, too, can
in a state-space (see Chapter VII1,A).

solution
standard).
be recorded

The left-hand side of Figure 4.1,3 shows a solution path for the
above problem in an expanded state-space; on the right is a solution
path in a reduced state-space. The right-hand side of the figure
depicts a path likely to correspond to the written work of many
students. Curtailment may result in some of these steps being
skipped or abbreviated, as shown. On the other hand, the left-hand
column is intended to represent some of the theoreticalpossibilities,
steps which might be taken by some students at various_times. The
following are some of the features of state-space reduction which
were discussed earlier that have application to the correspondence
between the expanded state-space.and the reduced state-space in this
diagram.

(a) States related by virtue of the associative property for
addition may be taken as equivalent, and the "unnecessary" parenthe-
ses removed. Likewise, states related by virtue of the associative
property for multiplication may be taken as equivalent. Furthermore,
states related by.virtue of the inclusion of superfluous parentheses

..may be taken as equivalent. For example, the two states "(7x + 11) +
(-11) = (102) + (-11)" and "7x = (11 + (-11)) = (102) + (-11)" may
correspond to the same.,state, "7x + 11 + (-11) = 102 + (-11)." The
removal of parentheses amounts to the disregard of certain "irrele-
vant" attributes which formerly distinguished.the states from each
other. In the language of this chapter, a surjectiye homomorphism
(many-to-one) is defined from the expanded state-space onto a reduced
state-space. The more experienced the problem solver is in algebra,
the more rapidly and "automatically" the irrelevant parentheses are
removed or ignored.

(b) States incorporating expressions for addition of a negated
quantity may be taken as equivalent to corresponding states incor-
porating subtraction of the quantity. Thus, the state "7x 11 +

(-11) = 102 + (-11)" can be reduced still further, to the state
"7x + 11 - 11 = 102 11."

(c) States related by virtue of the addition of zero, or multi-
plication by unity, may be taken as equivalent. ,Disregard of these
"irrelevant" attributes of the states results in further reduction
of the state-space.

(d) Computational algorithms may be considered a single "step"
in a reduced state-space. When we focus on the algebraic structure

,of a problem, each arithmetic computation becomes a self-contained
subproblemi with an associated subspace of the state-space that can
be identified with a single state in the reduced state-space. Again,
more experienced problem solvers in algebra "chunk" such computations,
so that possibly complicated numerical computations do not result in

lengthy detours _from the main argument.
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Figure 4.13 A Solution Path for a Linear Equation in One Variable in
an Expanded State-Space, with Possible RedUctions

7X + 11 . 102

(7X + 11) + (-11) = (102) + -11)

7X + (11 + -11)) . (102) -11

7 (102) (-11)1

Jr

I7X 102 - 11

= 102 - 11

17X 102

-11

7X = 102
-11

[]1
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curtailmen

7X . 102 - 11
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(e) Any letter might have been consistently substituted for X
without changing the structure of the solution path. The arbitrari-
ness of the choice of letter symbols is an overall symmetry of the
standard representation for problems in algebra.

The steps in the expanded state-space which are displayed in
Figure 4.13 may be thought of from two perspectives. On the one
hand, some of the steps resemble those presented in the rigorous
"justifications" of algebraic manipulations given in some texts,
in which each step is accompanied by the appropriate "reason":
"addition axiom for equality," "associative property of addition,"
"additive inverse property," "additive identity," and so forth. On
the other hand, other steps resemble those taken by a rather dull /

"plodder," who cannet perform any steps mentally or see two steps ,

ahead in the problem and who finds it necessary to write "+0" in
place of "+11 - 11" before dropping the expression altogether. Of'

course, these interpretations are merely metaphors. The steps in
Figure 4.13, along with many other possible valid expressions for
the "same" mathematical procedures, are simply "there"; they form
a part of the task environment for the solution of elementary algebra
problems as taught to a substantial population of students.

The state-spaces of Figure 4.13 may be expanded or reduced still
further. For example, the step from "(i.7)x = 4(91) to "0.).- ,17-(91)"

may be considered to pass through the intermediate step "7.7 = 1,"

which is then followed by a substitution. At the other extreme, the
steps from "7x + 11 102" to "7x 102 - 11" may be taken as a single
move ("bring the constant term to the other side with a change of
sign"). In short, many levels can be defined in which state-spaces
of symbol-configurations for routine algebra problems are embedded in
more complicated state-spaces. We note again that very different
paths are obtained when "guess-and-check" moves for finding the value
of X are examined. It is not the purpose of this section to describe
exhaustively all of the possibilities, but to lay some groundwork for
the definition of structure variables in routine algebra problems.

Diagrams such as Figure 4.13 may be constructed for more compli-
cated problems involving more equations and more unknowns. Each

"method" for solving such systems of equations yields particular
sequences of moves. For example, there are moves based on substi-
tution for the value of one of the unknowns in tefms of the others;
there are moves based on addition or subtraction of one equation from

another. All of the considerations mentioned above about the level
of expansion or reduction of the state-space apply as well.

In general, the skilled mathematics teacher is cognizant of the
alternative paths which may lead to solutions of routine algebra
problems, as well as the alternative levels of detail with which
steps can be represented. The well-instructed student should be
able to describe"a step such as "bring the constant term to the
other side with a charge of sign" as a shortcut for a sequence of
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steps, while using the shortcut naturally and freely as
during problem solving,

of these considerations in mind, let us look at the
definition of task structure variables in routine prob-

Controlling for Problem Structure

In problem-solving studies, it is often important to develop
routine problems which have the "same" mathematical structure, in
order to study the effects of other, experimental variables. Despite
the different possible choices of state-spaces, the concept of a
state-space isomorphism permits us to call problem structures "the
same" when the algebraic equations into which the problems may be
translated are the same, except for the choice of arbitrary letters
to stand for unknowns. The state-spaces for such problems will be
isomorphic regardless of which level of expansion or reduction is
used.

A more difficult,Situation arises when it is desired to charac-
terize problem structures as "the same" when the values of numerical
constants differ. The characterization then depends upon the selec-
tion of a representation. In Figure 4.13 we may distinguish between
the algebraic moves and the computational moves which occur, and
require two conditiGas in order that problem structures be "the
same"--(a) that the algebraic equations into which the problems may
be translated be the same, except for the choice of.arbitrary letters
to stand for unknowns, and except for the choice of numerical con-
stants; however, corresponding numerals should have the same number
of digits, and the single-digit numbers "0" and "1" should not be
taken as equivalent to other single-digit numbers; and (b) the com-
putational moves for the problems should be in one-to-one correspon-
dence, requiring corresponding paths through all standard computational
algorithms. These conditions that problem structures be "the same" are
employed in the study by Goldin and Caldwell described in Chapter VI.

Selection of a representatio other than the standard algebraic
representation of solution paths may drastically alter the assertion
that two problems have "the same" structure. The study by Harik
described in Chapter VIII.A utilizes a "search space" representation
for algebra problems which is based on "guess-and-check" moves.
Changes in the values of numerical constants have a major effect
on the size of the search spaces. Again we have the situation that
task structure variables describe the problem representation, not
the problem statement,

Defining Task Variables in a Standard Representation

In order to assign numerical values to structure variables such
as those listed in Table 4.2, it is necessary to fix once and for all



an arbitrary level at which states will be considered to be distinct,
and to specify once and for all the steps which will be considered to
constitute indtvidual moves from state to state. The following con-
ventions for a standard representation of elementary algebra problems .
are proposed:

(a) Symbol-configurations related by virtue of the associative
property of addition or multiplication represent equivalent states.
Symbol-configurations related by virtue of superfluous parentheses
represent equivalent states. Thus the states "7x + (11 - 11) 102-11,"
"(7x + 11) - 11 (102) - 11," etc. are equivalent, and may all be
abbreviated "7x + 11 - 11 102 - 11."

(b) Symbol-configurations related by virtue of the commutative
property of addition or multiplication represent equivalent states.

(c) Symbol-configurations related, by virtue of the symmetric
property of equality represent equivalent states. Thus "7x0. 91" is

equivalent to "91 7x."

(d) A single move is required for any of the following: (1)

to change both sides of an equation by adding, subtracting, multi-
plying by, or dividing by identical expressions (exclusive of
division by zerp); (2) to change both sides of an equation by adding,
subtracting, multiplying by, or dividing by previously obtained
equations; (3) to change both sides of an equation by performing
a single operation on each side, such as negating each side, taking
the reciprocal of each side, squaring each side, etc.; (4) to per-
form a single arithmetic computation (regardless of.complexity);
(5) to substitute an expression for a variable consistently through-
out an equationc (6) tlo distribute multiplication over a sum or
difference of terms; (7) to distribute a negation over a sum or
difference of terms; (8) to cancel terms of opposite sign, or to
cancel like factors in the numerator and denominator of a rational
expression.

With the above conventions, it is possible to characterize the
length of the shortest 'solution path in a problem such as "7x+ 11
102" in an unambiguous fashion. Six steps are required, as sholin on

the right of Figure 4.13. With these conventions, it is also
possible to compare problems having different systems of equations
with respect to the lengths of their minimal solution paths, and to
keep track of steps taken.by the problem solver which deviate from
the most direct paths. As the domain of problems under considera-
tion is widened, additional conventions may be assUmed.

Once standard conventions for describing the states and moves in
elementary algebra problems have been established, we can 'examine any
particular category of moves as they are required for solution of a
problem. For example, the computational moves may be classified with
reference to the paths through standard arithmetic algorithms which
they require; the substitution moves may be classified with reference
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to the complexity of the substituted expression; the distributive
moves may be classified with reference to the number of terms over
which the distribution takes place; and so forth.

Comparing the Characteristics of Problem States

Another way to approach the study of structure variables in
routine problems is to examine the characteristics of the corres-
ponding systems of equations (the initial problem states), without
becoming ,involved in tracing solution paths through a standard state-
space. For example, problem states may be compared with respect to
the number of equations, the number of unknowns, the operation symbols
in the equations, etc. Of course, it is assumed that these charac-
teristics have consequences for the solution paths in the state-
space.

The study by Days described in Chapter VII.B classifies verbal
problems by means of the characteristics of the corresponding systems
of equations, as well as by,the number of steps in the solution paths
(using conventions for definift$ "steps" which are somewhat different
from those proposed above).

Comparing nioblems with Respect to a Solution Algorithm
or Strategy

A final method which may be used to define task structure varia-
bles in routine problems is to select a particular algorithmic
procedure or strategy which may be applied to a class of such problems
(see above). A well-defined solution algorithm will accept the initial
state as input and generate a unique solution path through a standard
state-space. Correspondingly, a well-defined strategy will generate
a set of possible-solution paths, which may or may not contain an actual
solution path. One may then consider task variables defined from chkr_7_

acteristics of the paths, or from characteristics of the application of
the algorithm or strategy.

In this approach, task structure variables are defined not only
with respect to a particular mathematical representation of the task,
but also with respect to a particular method of solution within the
representation.

3. Structure Variables and Problem-Solving Behavior

Symmetries and Conservation Operations

We saw edrlier that the set of symmetry transformations of a state-
.

space always forms a group. The concept of a group is the paradigm in
mathematics of the methodology which has been termed "structuralist"
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(Lane, 1970; Piaget, 1970). According to Piaget, a structure in the
most general sense is a system or set within which certain relations
or operations have been defined, embodying the properties of whole7
ness, transformation, and self-regulation, Structuralist methodology
has been applied to fields as diverse as anthropology and linguistics
as well as psychology and mathematics (Bourbaki, var.; Harris, 1951;
Levi-Strauss, 1963, 1969; Piaget and Inhelder, 1969)..

In Piagetian developmental psychology, the acquisition of conser-
vation operations by children--conservation of number, volume, etc.--
defines sequential stages in their cognitive development. In view of
the parallel fundamental roles played by group structures in mathe-
matics and cognitive structures in the structuralist view of develop-
mental psychology, it is natural to try to look at the acquisition of
conservation operations as equivalent to the acquisition of a group
of symmetry transformations.

In a problem representation, the states may be distinguished from
each other by virtue of having different discrete values for a set of
variables we shall call observables. The observables may or may not be
numerical--they may include color, position, and so forth. Let us say
that a symmetry group G in the state-space conserves a set B of
observables when, for every state s, all states which are in Gs
(the orbit containing s) have exactly the same values for the observ-
ables in B. That is, the observables conserved by G are those whose
values are left unchanged by the symmetry transformations of the prob-
lem. Of course, for the states to be regarded as different at all,
there must be other observables which do change ir value under the
symmetry transformations.

Let us look at the state-space for a conservation of number task
from this viewpoint. Consider the rearrangement of n objects on a
table or two-dimensional surface, such as might occur during a number
conservation experiment. This is not a problem-solving task per se,
since it does not have an established set of goal states. Neverthe-
less, it is a highly structured task environment, for which a state-
space description may be useful. A configuration of objects may be
described by vector coordinates (xl, x2, ..., xn). A new configura-
tion of objects, described by vector coordinates (x1', x2', ..., xn'),
may be obtained from the initial configuration by means of a rearrange-
ment mapping or deformation which appropriately transforms the points
in the two-dimensional plane. Such a rearrangement must be one-to-one,
so that two objects do not wind up at the same point. It must also be
surjective, so that it is invertible. Noting that any two mappings of
this kind may be applied successively to yield a third, we have the
fact that the set of all such mappings forms a group, G.

Now take the collection of states to be the set of all possible
configurations of n objects on a two-dimensional table surface, for
n 0, 1,-2, . (For the purpose of this discussion, we shall not
worry about the boundary of the table.) A move consists of changing
the position of a single object, or of removing an object, or of
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Figure 4.14 Rearrangement's (en Objects in 2-Dtmensional Space

(a) A general rearrangement by means of a spatial deformation.

millO.M0111111111

x
2

(b) Rearrangement of n objects by means of a translation mapping.

X
1

X
2

x
n

x
1

' x '

3
. x

(c) Rearrangement of n objects by means of a rotation mapping.

,

2

x
1

(d) Rearrangement of n objects by means of a dilation mapping.

---->
X
1

X2 xn X1 X2 xn'

1 14



-159-

adding an object, The group defined above maps the set of states
onto itself and satisfies the definition of a symmetry group for
this state-space.

To say that number is conserved means that when a given state is
transformed into an altered state by moving the objects around, nOt by
adding any cir taking any away, then the value.of the obiervable
n number" remains.unchanged at n. Thus, the acquisition of numbet
conservation by the child (that is, the ability to respond .direc,tly
that the number of objects remains unchanged when only the _positions
of the objects have been altered) corresponds to the acquisition' of
the structure of the symMetry group G (that is, the abilitY to undo or
invert any rearrangement transformation, and to perform two such trans-
formations successively to obtain a third).

Mathematically, the group G has a rich structure of subgroups--
translations, rotations, reflections, dilations, etc. Some of these
are illustrated in Figure 4,14. Each subgroup defines a-correspond-
ing system of equivalence classes of states. This suggests that
stages in the acquisition of a symmetry group structure might actually
correspond to the acquisition of partiEular subgrovs. For example,
a child might at some stage recognize that the number of objects
remains unchanged when a configuration is merely translated a certain
distance in space, without its being spread out or otherwise rearranged.
If this were to occur, it would be possible to say that the subgroup of
G composed of all rigid translations had been acquired as a symmetry
structure. Effectively, the state-space will have been reduced modulo
the subgroup.

Just as the group G conserves the observable "number," its sub-
groups conserve not only "number" but other observables as well. Thus

the rigid motions conserve the distances between objects. In addition,
translations conserve their orientation to the horizontal, Dilations
preserve the orientations of the objects, but only the ratios of the
distances between them.

In general, specification of a symmetry group in a state-space is
logically equivalent to specification of the observables conserved by
the action of the group.

The point: of the above analysis is to assert that the various
groups described are intrinsic to the conservation task environment,
and thus may be regarded as task structure variables. For a Fiagetian
conservation task, we have syntax variables characterizing the manner
in which the task is verbally described and in which questions are
posed; we have context variables characterizing the attributes of the
objects which are transformed (e.g., familiar vs. unfamiliar objects,
or objects which have a "natural" one-to-one correspondence, such as
eggs and egg-cups); and we have structure variables relating to the

hierarchy of symmetry groups of the state-space. In much of the
research on conservation tasks, the syntax and context variables are

I 76



modified in various ways, inirder to verify that the observed stages
are not sensitive to these ohanges in the task. A less-explored
question has been the relationship, if any, of the observed stages
to the intrinsic task struCture variables.

,

State-Space RepresentatiOn of Problem-Solving Behavicr

The value of state-fspace analysis in characterizing problem
structure suggeits the, ility of mapping actual problem-solving

thbehavior as paths rOu he state-space. A path is a sequence of
;tStstates si, ..., an suc ii that for i = 1, ..., n-1, the pair (si,si.4.1)

is a permitted mov".! A solution Tath for a problem (or subproblem)
is a path in which si is the initial state and sn is a goal (or subgoal)
state, with s2, .., sn_l neither initial states.nor goal (or,subgoal)
states. Two paths within respective isomorphic problems-are said to
be congruent (modulo the isomorphism) if one path is the image of the
other under the isomorphism.

..

In problem solving it is frequently the case that the solver acts
sequentially upon problem situations (states) in an external represen-
tation to generate successor states. Ideally the process can be
described by means of paths through a state-space,which has been
constructed and analyzed by the (omniscient) researcher, In practice
it may not be easy or even possible to recor vior in this fashion.
The best experimental situation is a problt whose states correspond to
different discrete configurations of an a ual physical device, such as
the Tower of Hanoi board utilized by Lu er (see Chapter VII.C). The

study by Farik (Chapter VIII.A) is i cative of the possibilitiesoin
an experimental situation involving g.raper-and-pencil computations.

The decision to represent p lem-solving behavior as paths through
an external state-space is motivátd by the desire to establish pre-'
cisely, ahead of time, a set of possible behaviors which is of manage-
able size. The problem solver's actual behaviors then constitute a
portion of the data which need to be explained by a theory of problem
solving. Problem solvers' protocols do offer considerable information
beyond the mere description of states entered in sequence; protocol
classification schemes are discussed further in Chapters V and VIII.B.
Thus it is important to stress that, in looking at state-space paths,
we are singling out a subset of the available data for particular
attention.

It is worthwhile to mention a distinction between this approach
and that taken by Newell and Simon, in which the problem space for a
single problem is permitted to vary from subject to subject (See Table
4.1). Instead of "states of the problem" as a structured external
environment, they place their focus on "states of knowledge" about
the problem. Their approach thus permits, in principle, a very
detailed interpretation of an individual's problem-solving protocol
as steps in information processing. However, it also lends to their
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model a somewhat post hoo characterno definite commitment concerning
the sLructure of the problem space needs to be made until after a
problemsolving attempt has been observed. Here we wish to regard
the problem solver and the task environment as two separate, inter-
acting systems. By characterizing the states of a problem represen-
tation ahead of time, we describe for a population of subjects a
structured set of possible behaviors together with their environmental
consequences. Then it is possible to formulate hypotheses regarding
the effects of problem structure variables on these behaviors, and
correspondences between the individual's "knowledge states" and the
problem's state-space can be explored.

The state-space description of behavior is limited in its appli-
cability to localized problem-solving.episodes during which the solver
understands the rules of procedure, and is able to discriminate 9óng
the different values of the perceptual variables which characteriz
the states. The acquisition of these rules and discriminative abil
ties prior to the commencement of problem solving is not addressed.
Nevertheless, some notion of how one intends to proceed from the
study of local problem-solving episodes to an understanding of the

global process of cognitive change needs to be made explicit. The

acquisition of symmetry group structures during problem solving may be

an important means of making this transition. The fact of which
symmetries are incorporated by the problem solver, and which are
neglected, determines which states are treated as equivalent and
which as distinct. Thus, as described in the preceding section, such
manifestly global changes as the acquisition of conservation operations

might be described in principle using symmetry group structures.

An approach to the study of patterns in the state-space paths

generated by problem solvers is to formulate general hypotheses, repre-
senting anticipated possible effects of problem structure variables
(Goldin and Luger, 1975; Luger, 1973, 1976). Whether or not these
effects actwitly occur may depend not only on problem structure, but
also oncsyntax, content, and context variables. Even more importantly,
their occurrence will depend on characteristics of the problem solvers

(i.e., subject variables). Thus, what is proposed in the following

list is not a set of hypotheses expected to hold universally, but a
set of patterns which can be tested for in particular situations.

Hypothesis 1. In solving a problem, the subject generates non-
random, forward-directed paths in a state-space. By a forward-directed
path, we mean one which does not "double back" within the state-space;
that is, the distance (as measured by the number of steps) from the

initial state is non-decreasing. A special case of a forward-directed
path is a goal-directed path, for which the distance from the "nearest"
goal state is non-increasing; the hypothesis may be modified to test

for gcal-directed paths.

Given a decomposition of the state-space into subspaces, Hypothe-

sis 1 may be tested separately for the paths through each subspace,
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taking the state of entry to the subspace as the" initial state for tbe
subproblm'and using a set of pre.-establiahed subgoal states to define
subgoal-directed paths. Furthermore, it may be hypothesized that, when
a subgoal state is entered, the subject leaves the state in such a
manner as to exit also from the subspace.

Hypothesis 2. Identifiable stages occur during problem solving
corresponding to the solution of subproblems within the main problem.
That is, path segments occur in the state-space which do not consti-
tute solutions or at least are not the most direct solutions) to
the main problem, but which do constitute direct solution paths for
pre-specified subspaces of the state-space. Where appropriate; this
hypothesis may be investigated for various alternative decompositions
of the state-space into subspaces.

Hypothesis 3. When two subproblems of a problem have isomorphic
state-spaces (that is, are of identical structure), the subject's paths
through the respective subspaces tend to be congruent. This hypothesis
would be particularly interesting to test insofar as it might depend on
the problem embodiment--perceptual similarities and differences among the
isomorphic subspaces.

Hypothesis 4. Given a symmetry group G of automorphisms of the
state-space, and a sequence of paths corresponding to trials by a
single,subject, there tend to occur pairs of paths (for adjacent
trials) which are congruent modulo G. Such occurrences often culminate
in the immediate and direct solution of the problem. This hypothesis,
intended to describe an aspect of "symmetry acquisition," is motivated
by the "insight" phenomenon that changes the "Gestalt" of.the problem
solver.

In the event that the set of goal states is not invariant under
the symmetry group (that is, taking C to include non-goal-preserving
automorphisms), then there will be a class of congruent paths for
which only certain ones terminate in goal states. It may then be
hypothesized that the occurrence of pairs of paths congruent modu10 G
in a subject's trials is correlated with an initial move by that
subject along a non-solution path. An illustration of klpothesis 4
is provided for the case of a subject solving the Tower of Hanoi
problem in Figure 4.15.

Hypothesis 5. Identifiable stages occur during protlem solving
corresponding to the acquisition of subgroups of the problem symmetry
group G. This hypothesis might be testable by seeking discontinuities
in state-space paths, where in effect the subject has moved from a
state to another state which is conjugate to the first by virtue of
an automorphism. The set of automorphisms for which moves of this
sort take place, if not the whole group G, could characterize a sub-
6...oup of G.
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Hypothesis 6. Given two problems having isomorphic state-spacis,
significant transfer of learning will occur from solution of one prob-
lem to solution of the other, even when the isomorphism isnot
perceptually apparent. Measures of success on the tasks may include
the number of trials prior to successful solution, the total number of
moves prior to successful solution, or the time to solution. A ques-
tion of particular interest is that of how the task emboaiments affect
the validity of this hypothesis.

Alternatively, Hypothesis 6 may be reformulated for problems
having homomorphic state-spaces, and tested for each of the types
of homomorphisms described eitlier in th3s chapter.

Hypothesis 7. Given two problems having homamorphic state-spaces,
it is more advantageous to present the more complex task first than to
present the simpler task first, from the standpoint of measures of
success on both tasks. This is one way to restate the "deep end"
hypothesis of Dienes and Jeeves. Alternatively, given two problems
having isomorphic state-spaces, it may be more'advantageous to pre-
sent first the task having the greater complexity of syntax.

While some of the above hypotheses, particularly the first few,
may seem to be intuitively obvious or necessary, it is not difficult
to construct mechanical problem-solving algorithms which violate any
or all of them. The hypotheses are intended not as a definitive list,
but as suggestions of the kinds of analysis of paths through state-
spaces that are'possible.

4. A Summary of Independent and Dependent Variables

In accordance with Kilpatrick's classification of problem-solving
research variables described in Chapter I, the task structure varia-
bles which we have discussed are taken as the independent variables in
the study of problem solving. We interpret the problem task, or collec-
tion of tasks, as a measuring instrument, designed to yield information
about problem solvers either individually or collectively. A thorough
analysis of task structure tells us the characteristics of the measur-
ing instrument, permitting us to separate more effectively information
which is about the task itself from information about the problem
solvers.

In Table 4.3, we have attempted to outline some of the anticipated
effects on problem solving of structure variables. This table summar-
izes many of the points already made in the chapter, and goes somewhat
beyond them to anticipate directions of experimental inquiry which are
included in the second portion of this book.

Some words of caution are in order. The table is not intended to
be a complete or exhaustive listing of task structure variables, but
rather to be indicative of the possibilities which are available for
defining them. The anticipated effects listed are /lot being claimed

16'0
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Table 4.3 Summary of Anticipated Effects of Task Structure Variables
on Problem:-Solving Outcomes

Task Variable Anticipated Effect

Problem Complexity Variables

(a) Total number of states

(b) Length of shortest solution
solution path

(c) Number of blind alleys

(d) Number of possible first
moves

(e) Number of possible first
moves which lie on solu-
tion paths

(f) Number of possible state-
space paths of length
less than or equal to n,
for any n

(g) Number of goal states

(h) Ratio of the number of
. goal states to the total

number of states

(a) With increasing total number of States, ,

any state-space search is likely to be
lengthier, increasing problem difficulty.

(b) As the length of the shortest solution
path increases, search procedures which
limit the depth of search become less
likely to approach goal states, and
problem difficulty Should increase.

(c) With an increase in the number of blind
alleys, depth-first search becomesmore
likely to generate "dead-end" paths,
and problem difficulty should increase.

(d) This variable may be indicative of the
number of paths which "go wrong ;" if so,
problem difficulty should increase as
the number of possible first moves
increases. In addition, a large set
of possible first moves may have a
bewildering effect upon the problem-
solver, discouraging trial-and-error.

(e) This variable may tend to offset the
effect of (d), if random choices of
first moves are more likely to be
/Icorrect. VI

(f) This variable might describe the
lengthiness of a state-space search
of depth approximately equal to n.

(g) More goal states may be associated
.with a greater-likelihood of a goal
being encountered during a state-
space search.

(h) As this ratio increases, problems
should become less difficult, since
searches should be more likely to
encounter goal states.

This ratio may describe the off-
setting effects of variables (d)
and (e).

(i) Ratio of the number of (i)

possible first moves which
lie on solution paths to the
total number of possible
first moves

1 81
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Table 4.3 (continued)

(j) Total number of solution
paths
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(j) As the total number of solution paths
increases, depth-first search proce-
dures should become more likely to
succeed, and problems should become
less difficult.

(k) Ratio of the total number (k) As a measure of the "density" of
of solution paths to the solution paths among all paths, this
total number of state-space ratio may describe the likelihood of
paths of length less than success of a state-space search
or equal to n, for any n having depth approximately equal to
,(counting solution paths as n.

distinct only if they separ-
ate in fewer thann steps)

Variables Defined with Respect to Algorithms or Strategies

(1) Length of a solution path
generated by a particular
algorithm

(m) Number of times any par-
ticular loop in the
algorithm is traversed
(09192,...)

(n) The number of times any
particular branch point in
the algorithm is crossed
(0,1,2,...)

(o) The number of times any
particular operator is
called for by the algorithm

(p) The susceptibility to solu-
tion of the problem with
respect to a particular
strategy

(q) The minimum number of
steps in a solution path
generated by the strategy.

(1) To the extent that the algorithm
resembles the problem solveesactual
attempt, this variable may be pre-
dictive of problem difficulty.

( ) Assuming a fixed probability of error
in each traversal for each subject,
this variable may quantitatively
predict the likelihood of specific
error patterns.

(n) Similar to (m).

(o) Similar to (m).

(p) This variable may predict the effect
(or lack of it) of prior instruction
in the strategy in question.

(q) A whole set of variables such as this
one should be predictive of the ease
or difficulty with which various
problems are solved using the strategy.

continued
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Table 4.3 (continued)

Variables Describing the Initial State
in a Standard Representation

(r) Number of equations and
unknowns

(s) Number of occurrences of
any particular operation
(0,1,2,...)

(t),Nutber of parentheses

(r) Variables suchas these are indicative
of more or less complex paths generated
by standard algorithms, and thus may
be predictive of problem difficulty
without the need for detailed algo-
rithmic or state-space analysis.

(s) Operations occurring explicitly within
the initial state are likely to be
called forby standard algorithms.
Thus this variable may be associated
with (o).

(t) Each pair of parentheses may be asso-
ciated with the use of particular
operations by standard algorithms
(the distributive property, for
example).

Symmetry and Subproblem Characteristics

(u) Number of elements' in the
symmetry group G

(v) Equivalence classes of
states under the action
of G

(w) Subgroups of G

(x) Forward-backward symmetry

-a

(y) Subspace decompositions
of the state-space

(u) As thil variable increases, problems
possess moreandmore symmetry,and the
likelihood of utilization of the sym-
metry by the problem solver should grow.

(v) These states may come to be treated
as equivalent by problem solvers
during the course of problem solving.

(w) The infrastructure of subgroups may
be predictive of stages during problem
solving, corresponding to partial
recognitionof the problem symmetry
by the solver.

(x) Problems without forward-backward
symmetry may yield to "working back-
ward"; while problems with this sym-
metry may evoke the technique of
working forward a certain number of
steps, working backward along the
corresponding path, -and connecting
in the middle.

(y) Subspace decompositions may be pre-
dictive of stages during problem-
solving corresponding to the solu-
tion of particular subnrobtems.

continued



Table 4.3 (continued)

(z) Subspace decompositions
into mutually isomorphic
subproblems
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(z) Stages during problem-solving may
correspond to the solution of iso-
morphism classes of subproblems.

Variables Describing Relationships Between Problems

(a') Existence of an isomor-
phism between problem
state-spaces

(b') Existence of a homomor,
phism between problem
state-spaces

(a') Such an isomorphism may predict
transfer of learning from one
problem-solving experience to
another. Consistency of strategy
usage may be examined.

(b') Homomorphic relationships may also
be predictive of learning transfer.
The type of homomorphism (injec-
tive, surjective, embedding, etc.)
may affect transfer in specific
ways (e.g. the "deep end" hypothesis)..
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to occur under all or even most circumstances, but are proposed as
effects which might be observed under some conditions when other task
variables, unrelated to the specific variable under discussion, are
held constant.

Table 4.3 contains references to two categories of dependent
variables. Product variables include measures of task difficulty,
such as the number of correct solutions by a given population of
subjects, the mean time to solution, or the mean number of trials
to solution. Process variables include measures of the methodz
used in problem solving.

Many of the dependent variables are examined in the studies which
are described in the second portion of this book. One branch of
research examines the effects of task structure variables on task
difficulty (Days, Chapter VII.B). A second branch of research studies
transfer of learning. Here the independent variables are the task
variables of a pair of tasks, together wdth the order of presentation;
the dependent variables are measures of success on the two tasks
(Waters, Chapter VII.A; Luger, Chapter VII.C). Same process varia-
bles can be stuaied by examining paths through the state-space
corresponding to subjects' behaviors (Luger, Chapter VII.C; Harik,
Chapter Other process variables include strategy scores and
heuristic behavior scores (Waters, Chapter VII.A; Harik, Chapter VIII.A;
Lucas et al., Chapter

These studies taken collectively represent a tiny beginning in the
effort to investigate systematically the effects of task structure varia-
bles, in conjunction with other factors, on problem7solving outcomes..
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Heuristic Processes as Task Variables

by

C. Edwin McClintock
Florida International University

Miami, Florida

Heuristic reasoning and the behaviors that reflect it are generally
considered to be characteristics of the problem solver. However, it is
suggested in this chapter that heuristic processes may be viewed from
another standpoint as inherent in mathematical problems. The nature and
degree of this inherency varies from problem to problem. For some prob-
lems the inherency may be fairly easily characterized, based on a logical
analysis of the problem structure. For example, the three-ring Tower of
Hanoi problem must be "accomplished" several times in the process of
solving the four-ring Tower of Hanoi problem, within the representation
discussed in Chapter IV. In this sense, the four-ring problem "contains"
the heuristic process called "subproblem decomposition." This does not
imply that a problem solver necessarily employs that process consciously
in solving the problem, only that it is a reasonable and plausible one
based on the logical analysis of the puzzle. .

For other problems, heuristic processes appear to be less task
specific and more related to the problem solver. Even then, however,
the task environment provides the stimulus that sets the course of
reasoning. It is the interaction between the mental operations of
ehe problem solver and the task itself that evokes the heuristic pro-
cesses that occur during the problem-solving episode.

Section 1 of this chapter reviews the related research, which is
described under three headings. Theoretical perspectives refer to the
characterization of heuristics from the standpoint of effective or
efficient problem solving. Experimental perspectives refer to the
investigations in controlled s:dies of the use and efficacy of heuris-
tic processes. EXploratory investigations include the clinical study
of the learning and teaching of heuristics. In the author's view, all
three types of research are equally important and necessary to progress
in our understanding of problem solving. This section includes a
description of various techniques for coding and recording problem-
solving processes, techniques carried considerably further in Chapter
VIII.8 of the present book.

Section 2 of this chapter offers a broad clas,ificatiol of heur-
istic processes in accordance with the distinction between problem
statements and problem representations described in Chapter I (Figure
1.1).
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Table 5.1 Definitions and Descriptions of %euristic"

We can therefore say that insistent analysis of the
situation, especially the endeavor to vary the appro-

priate elements.sub specie of the goal must belong to
the essential nature of a solution through thinking.

We shall call suCh relatively general procedures
heuristic methods of thinking (1945, p. 20).

Heuristic reasoning is reasoning, not regarded as final

and strict, but as provisional and plausible only,
whose purpose it is to discover the solution of the
present problem (1957, P. 113).

Heuristic, or heuretic, or ars inveniendi was the name
of a certain branch of study, not very clearly circum
scribed, belonging to logic, or to philosophy, or to

psychology.... The aim of heuris.11c is to study the

methods and rules of discovery and invention (1957,

p. 112).

AUTHOR

Duncker

Polya

Polya

Modern heuristic endeavors to understand the process
of solving problems, especiall- mentaZ operations'

typically useful in this pr, ...957, pp. 129-130). Polya

I wish to call heuristics Lh, study. . .of means and

methods of problem solving.... I am trying. . . to

entice the reader to do problems and to think 'about
the means and methods he uses in doing them (1962, p. vi). Polya

We shall consider that a heuristic method (or a heur-

istic, to use the noun form) is a procedure that may
lead us to a shortcut to the goal we seek or it may
lead us down a blind alley. It is impossible to predict
the end result until the heuristic has been applied and

the results checked by formal processes of reasoning.
If a method does not have this characteristic that it
may lead us astray, we would not call it heuristic, but

rather an algorithm. The reason for using heuristics
rather than algorithms is that they may lead us more
quickly to our goal and they allow us to venture by
machine into areas where there are no algorithms (1958, Gelernter and

p. 337). Rochester

continued
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We use the term heuristics to denote any principle or
device that contributes to the reduction in the average
search to solution (1959a).

A11 that can 'be said for a useful heuristic is that it
offers solutions which are good enough most of the

time (1963, p. 6).

An heuristic is a decision mechanism, a way of behaving,
which usually leads to desired outcomes, but with no
guarantee of success. It is plausible in nature, giving
guidance in the discovery of a solution (1967, p. 3).

An heuristic is any device, technique, rule of thumb,
etc. that improves problem solving performance (1967,

p. 19).

Heuristics may be described as rules for selecting
search paths through a problem space; the theory of
problem solving 5s concerned with systems of heuristics
or methods of search which will exploit the information

in the task environment (1974, P. 7).

An heuristic is a path a problem solver chooses in his

search for a solution (1974, p. 103).

Newell, Shaw,
and Simon

Feigenbaum
and Feldman

Wilson

Kilpatrick

Kantowski

Kantowski
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In Section 3, the inherency of heuristic processes in problem
tasks is explored, and the interactions of syntax, content, context,
and structure variables with heuristic behaviors are discussed.

1. Review of Research on Heuristic Processes

Theoretical Perspectives

The work of Polya toward resurrecting the ancient, ill-defined dis-
,

cipline called "heuristics" is the natural beginning point of a review
of theoretical aspects of heuristic processes. The terms "heuristic" and
"heuristic process" have been defined in a variety of ways, as Table 5.1
will reveal. Polya, a renowned research mathematician, teacher par
axcellence , and artist in solving problems and in teaching others to
solve problems, has contributed several of these definitions.

At the very,core of the subject "heuristics" is the disciplined
attempt to understand the process of human reasoning. The third defi-
nition by Polya in Table 5.1 suggests this notion. Further, related
to the "...mental operations typically useful in this process...,"
Polya identifies twelve principal articles in his "Short Dictionary of
Heuristic" (1957, p. 37ff, pp. 129-130):

1. Analogy

2. Auxiliary Elements

3. Auxiliary Problems

4. Decomposing and Recombining

5. Definition

6. Generalization

7. Induction and Mathematical Induction

8. Reductio ad absurdum and indirect proof

9. Specialization

10. Symmetry

11. Variation of the Problem

12. Working Backwards

It is within the context of these twelve principal articles that differ-
ent aspects of a problem are considered in turn, and that the mental
operations characterizing heuristic produce a provisional and plaasible
guess as to the solution. However, these provisional and plausible
guessing processes should, according to Polya, be seen as distinct from
and complementary to rigorous proof; they should never be confused with
nor sold as a replacement for strict and formally justified solutions
(1957, pp. 113-130).
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-

In addition to the construct of reasoning processes, another sense
1\

in which the term "heuristic" is used by Polya is that of a means to
the end of developing the mental operations typically usefullin the
heuristic reasoning process. Wilson (1967, p. 6) indicates that "His
(Polya's) list of questions may be regarded as a set of heuristics."
Examples of such questions are: (a) What is the unknown? (b) Do you
know a related problem? (c) Can you see clearly that the step is correct?.
(d) Can you derive the result differently? (See Ch. I, Table 1.2 for

this list.) The list is Structured around the four stages of problem
solving:

1. Understanding the problem

2. Devising a plan

3. Carrying out the plan

4. Looking back .1

They represent Polya's classification of the major heuristic processes
of problem solving. Two important points need to be emphasized about
this model. First, there is no sequence of processes for solution
implied by this model. Secondly, the questions contained in this model
are heuristlic processes only in the sense that they may initiate a men-
tal operation or a sequence of mental operations typically useful in the
problem-solving process. As Polya has stated it, the intent of these
heuristic questions is that

The student may absorb a few of the questions of our list so
well that he is finally able to put to himself the right ques-
tion in the right moment and perform the corresponding mental
operation naturally and vigorously. (1957, p. 4)

The fourth of Polya's definitions in Table 5.1 suggests the impor-
tance Polya attaches to the relationship between heuristic processes and
problem solving. It also suggests the hypothesis that studying processes
of problem solving is essential for effective use and transfer of those
processes. This is much like the view expressed by Henderson and Pingry

(1953):

Unless students study the process of solving problems as an
end in itself there is scant likelihood that they will learn
the generalization which will enable them to transfer their
ability to solve problems to new problems as they arise. (p. 233)

Polya offers much to the conception of teaching as an art. He
focuses upon the development of the mental operations that form the
basis of invention and discovery in his illustrations and discussion
of teaching. Further, he repeatedly develops the theme of "indepen-
dent thinking" as the aim of instruction and suggests the importance
of informal, intuitive thought along with formal, finished forms of
mathematics. This theme is a characteristic corollary to heuristic
teaching. Polya emphasizes its use in teaching in many of his works
as exemplified in the following:

190
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Trying to prove formally what is seen intuitively and to see
intuitively what is proved formally is an invigorating mental
exercise. .(1957, p. 72)

Infbrmation Processing Systows

Drawing from the foundations of Polya, Newell and Simon (1971,
1972) have proposed a theory of problem solving for which heuristic
processes are fundamental elements. Their contribution to Artificial
Intelligence through, particularly, General Problem Solver (GPS), and
their subsequent empirical comparison (using protocols of human sub-
jects "thinking aloud") with an alternate Information Processing System
(IPS) has led to their IPS theory of problem solving, as discussed in
Chapter IV. It has provided a substantial underpinning for mathemati-
cal problem solving. Based on symbol manipulation and "thinking in
symbols," this information processing theory bears some similarity to
the problem-solving theory of Gestalt psychologists (especially Wert-
heimer, 1959) in that past experience and its role in ongoing problem .

solving are a central part of both theories (Newell and Simon, 1959,
p. 11; Wertheimer, 1959, p. 68). The nature of the past experience
and its organization represent the main difference in these two views
of problem solving. Whereas a sudden, ill-defined reorganization of
elements of experience is purported, in the Gestalt view to occur
and to provide bursts of insight, Newell and Simon suggest that basic
processes occur in an orderly, sequenced manner and represent the postu-
lated organization of past experiences. The basic processes such as
reading and comparing symbols, transforming symbol structures, and
associating one symbol with another are postulated to exist and are
of interest in information processing; however, the crux is organization
4'of experience. This organization arises from ordering these basic pro-
cesses into a hierarchy of operations in problem solving. These
operators of mathematical problem solving are the fundamental components
of an IPS'program. A program, in IPS lariguage, is a hierarchically
ordered set of methods related to goal types, and executive control mech-

anisms for executing the methods and evalrating the achievement of the
methods with respect to the goal (see Newell, Shaw, and Simon, 1959b,
p. 7 for an example and explanation of a program).

Similarly, heuristic processes are key elements of problem-solving
programs. Efficiency and organizational simplicity have depended upon
and paralleled the nature of the heuristic processes embedded in the
program.

The influence'of Polya on the work of researchers involving the
simulation of human thought is expressed well in this comment by
Gelernter (1963):

A machine that functions under the full set of principles
indicated by Polya would be a formidable problem solver in
mathematics... . (p. 137)

1 Oi
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Miller, Galanter, and Pribram (1960, p. 16) speak continually of the
impact of Polya and the influences of Newell, Shaw, and Simon as they
describe the role of heuristic processes on "the plan," a crucial
element in computer simulation of human problem solving. The plan-
ning heuristics and means-ends analysis are two very %eneral systems
of heuristic processes developed by Newell, Shaw, and Simon; these
will be discussed later. As such, they are important elements of a
theory of problem solving. Newell, Shaw, and Simon (1959) define
heuristic processes as follows: "We use the term heuristics to denote
any principle or device that contributes to the reduction in the aver-

age search to solution" (p. 22). In so doing, they are implying that
problem-solving processes are viewed as search processes in which the
appropriate solution is being sought from the space of possible solu-
tions. Heuristic processes are, then, those efficient search processes
that reduce the field of search to a plausible set of alternatives and
that order and sequence the search.

To clarify further the conception of heuristics in the sense of
use in IPS, we refer to the "problem space" of Newell. and Sinon (Table 4.1).
It bears a striking resemblance to "state space" for a problem, as
described in Chapter IV. Like the state-space for a problem, problem
space depends upon the task environment, which in turn is shaped into

the subject's internal representation of the problem.

The internal representation that is set up by a problem solver is
the problem space for that problem solver. As such (until another
internal representation replaces it), it becomes the space in which
the problem-solving activity takes place. Such a search space is, of
course, dependent upon the knowledge and experience of the prob-
lem solver. Problem solving, in this theoretical view, becomes a
search for solution(s) in the spane of possible solutions. Heuristic
processes, then, are rule-governed processes that guide the selection
of the search path. In a program of artificial intelligence research
may be found the combination of plausible methods and an executive
structure that selects and sequences the plausible methods. Thus, a
program incorporates methods, algorithms,and the like; but, more
importantly it incorporates heuristic processes as a means of making
methods and algorithms more efficient and more effective.

The aspect of the 4ecision mechanism as a plausible, yet fallible,
mechanism is expressed/by Gelernter and Rochester (1958) in the follow-'
ing way:

/

We shall conside/r that a heuristic method (or a heuristic, to

ri2

use the noun f ) is a procedure that may lead us to a short

cut to the goa we seek or it may lead us down a blind alley.
It is impossilitle to predict the end result until the heuris-
tic has been/applied and the results checked by formal
processes 0/reasoning. If a method does not have this
characteri iic that it may lead us astray, we would not call
it heurist,41c, but rather an algorithm. The reason for using

heuristic rather than algorithms is that they may lead us
more quiqcly to our goal and they allow us to venture by
machine/into areas where there are no algorithms. (p. 337)

9:tN
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In a sense, then, Newell, Shaw, and'Simon define algorithms "into"

heuristic processes, while Gelernter and Rochester exclude algorithms

from the class of heuristic processes. There are advantages and dis-

advantages with both conceptions. Further, the question cannot be
resolved on logical grounds nor on grounds of "profit," for the "gray

area" makes the distinctim difficult if not impossible. (For a dis-

cussion of this issue, see Kilpatrick, 1967, pp. 9-20; Lancia, 1976a,

pp. 29-39.)

Following the further developmeni of the conception of,heuristic

processes, we return to a discussion of computer prograns that initially

appeared to model human problem-solving behavior in "line by line" com-

parison (see Kleinmuntz, 1966). An examination of the heuristic pro-
cesses embedded in these machines and the ektent to which heuristic
-programndmg allows for the developnent of efficiency and organiza-

tional simplicity will be made.

In contrast to the more specific types of programs and more task-

specific heuristic processes embedded in programs such as "Artificial

Geometer," "Student," and "Logic Theorist," the more sophisticated
"General Problem Solver" (GPS) employs two very general systems of

heuristic processes as well as more task-specific systems of heuris-

tics. Developed by Newell, Shaw, and Simon, CPS uses planning heuristics,

means-ends analysis, and task-specific heuristics.

The systems of planning heuristics embedded in GPS easily evolve

from Polya's model. Two vital_phases.of that model for problem solv-

ing involve planning; one involves "developing a plan" and the other

involves "carrying out the plan." From Polya's perspective, a plan
involves "...knowing at least in outline, which calculations, compu-

tations, or constructions we have to perform in order to obtain the

unknown" (Polya, 1957, pp. 8-9).

In Newell, Shaw, and SiMbn's theory of problem solving, planning

heuristics play a significant role.- As a system of heuristic pro-.

ceases, the planning processes allow for the construction of a
potential solution in an abstract form prior to carrying out the

concrete detailed solution. Newell, Shaw, and Simon (1959). speak of

it as being farsighted (as opposed to means-ends analysis which
it sees" one step ahead). The original conception of the planning
heuristics is described by Newell, Shaw, and Simon as follows:

(a) abstracting by omitting certain details of the original
objects and operators, (b) forming the corresponding prob-

lem in the abstract task environment, (c) when the abstract

problem has been solved, using its solution to.provide a
plan for solving the original problem, (d) translating the

plan back into the original task environment and executing

it. (pp. 1842)

Specific features that make the planning heuristics (in the strict IPS

sense) particularly powerful are (1) the provision of auxiliary problem
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capability in a different task environment, and (2) the fact-that the

plan, along with its ordered set of subproblems,,is simpler in com-
posite (as meabured by the number of total steps to solution) than

the original problem. This is assured through.the embedded heuristic

principle:

The principle of subgoal reductiod. Make progress by sub-
stituting for the achievement of a goal the achievement of

a set of easier subgoals. (p. 8)

This brief review of the planning heuristics indicates its

generality and importance. The generality,is evident through the
embedding within the planning heuristic of means-ends analysis, the
use of auxiliary problems,a!ld certain aspects of "learning."

From one perspective, the planning heuristics systemmay be fhe

most powerful system that exists in the IPS problem-solviatimodel and

will probably remain so until the Zearning heuristscs system moves

beyond the stage of rote learning (Slagle, 1971).

Much of Polya's writing centers on means-ends.analysis. For exam-

ple, the idea of decomposing and recombining as a general strategy is

based in this heuristic' approach. Another related strategy involvo
analyzing the solution process of a simpler related problem so that the

method or the result may be applied to the problem under investigation.
A 'third major technique that Polya recommends is that of solving
special cases of the problem so as,to establish a pattern that becomes

a means to the end of the solution to the original.problem.

Duncker (1945) considers,the heuristic method of reasoning to be
fundamentally thap of replacinga problem goal with a series of easier
subgoals. This, he says, is the critical element of thinking.' Further,
he declares that "the solution of a new problem typically takes place
in successive phases which . . . haveA.n retrospect, the character of
a solution, and in prospect, that of a problem" (p. 21). This
breaking of a problem into subproblems and the process that shows

the retrospective view of a solution and the new end of another

problem dharacterize means-ends analysis for Dundker. It is in these

combined senses of means-ends heuristics that Newell, Shaw, and Simon

evolved means-ends heuristics in GPS.

As one of the two strategic heuristic principles in GPS, Newell,
Shaw, and Simon (1959) discliss the general principle implicit in
means-ends heuristics. -This principle is that of replacing a goal
by the achievement of a sequence of easier subgoals. They list three
basic elements of means-ends analysis as outlined below:

1. If the goal is not obvious from the given, determtae the
essential differences between,given situation and goal
situation.

2. Choose appropriate operators based on the changes they
make in situations and the features that remain unchanged,

104
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in order to reduce the differences.between given and

goal.

3. Order the differences on difficulty and apply opefators

to the ordered situations in such a manner that the new
situation resulting from the ,application of an opera-
tion replaces the difficulty with a lesser difficulty.

The process implicit in means-ends analysis is obviously,iterative.

One typical form of iteration is that of selecting a subgoal, applying

an appropriate operator, evaluating the restating state, reordering the
situations on difficulty, selecting another subgoal, and so on. Thus,

,the generality of the mians-ends process has a sense of mathematical
structural reasoning inherent within it.

Wickeigrents Classification of Methods

The work of Wickelgren (1974) in the area of problem solving (mathe-

matics, science, engineering, etc.) has obviously been greatly influenced

by the information processing theorists and by Polya. As Wickelgren

himself states it:

My greatest intellectual debts are to Allen Newell, Herbert

Simon, and George Polya,. Newell and Simon's analyses of
problems and problem solving constituted my starting point

. many other-good ideas were taken more or less directly

from Polya, . . rich source(s) of methods, and a stimulus

for thought.(pp. ix-x)

In his book, Wickelgren illustrates and systematizes seven basic methods

of.solving mathematical problems. Each of these methods is either a
heuriscic process in the IPS sense of the concept or in Polya's sense

of the concept. The methods that he analyzes are (1) inference, (2)
classification of action sequences, (3) state evaluation and hill climb-

ing, (4) subgoals, (5) contradiction, (6) working backward, and (7)

relations between problems. Theie methods are defined.inTables 5.2 ani5.3.

Wickelgren says he ". . aims to guide you to discover how to
apply general problem-solving methods to a rich variety of problems"

(p. xi). With the intent of improving one's ability to solve problems

through teaching by erample,Wickelgren shares style, method, and pur-

pose with Polya. On the other hand, the contribution of his work to
"Elements of a Theory of Problems" is more explicit than that of other

authors, including Polya, ehough admittedly far from,precise. Wickel-

gren, then, in a rudimentary way focuses very clearly upon the problem,
the task itself, along with its interrelationship to heuristic pro-
cesses, as a key element in ". . . A Theory of Problems and Problem

Solving."

The first method Wickelgren describes Is the one he says is the

natural beginning point for attempts to solve tOproblem, the method of

inference. This method is definitely in the category of heuristic
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advice. It suggests characteristics of the task that imply a way of

selecting and ordering plausible alternatives in the search. In

essence, Wickelgren suggests as heuristic advice prioritizing possi-
ble inferences that can be drawn. The ordering begins with the most
productive inference *n "like situations";at the same time, the sugges-
tion is made that certain types of "insight problems" are considered
challenging simply because they are most easily solved by drawing a
"low priority" inference.

In a discussion on "Classification of ActiOn Sequences" Wickel-
gren distinguishes among (a) Random Trial and Error, (b) Systematic

Trial and Error, and (c) Classificatory Trial and Error, as is indi-
cated in Table 5.2. The three-basic trial-and-error methods Wickelgren
describes are hierarchically arranged wIth respect to the general IPS
heuristic precept, ordered devices fdr reducing the average search to
solution. The implications of this method for teaching are clear. For

a theory of problems, the implications center upon the characteristics
of the problem as a means of producing equivalent representa-
tions for seeing order or symmetry and for choosing the most appropriate
"equivalent action sequence."

The method related to "State Evaluation and Hill Climbing" is a
second method designed to reduce the amount'of search necessary for

achieving the solution. This method has, as its description suggests,
two separate but related concepts as indicated in Table 5.2. Clearly
this idea of "hill clitbing" is related, to the IPS heuristic
principle: "Make progress by substituting for the achievement of a
goal the achievement of a set IA' easier subgoals (the principle of_

subgoal reduction; Newell, Shaw, and Simon, 1959, p. 8). Wickelgren
operationalized this prtncige to make it applicable outside
of computer programs.

The fourth problem-solving method deseribed by Wickelgren is that

of subgoals. This method '

1

is advantageous for attacking.problems that require a
sequence of mete than two or three actions to solve...
If the problem.seems likely to be a isltistep rather than
insight problem, it is usually advantageous to spend more
time trying to generate plausible subgoals, because of the
enormous power of the met/1°4(pp. 92-93)

Wickelgrengi4es some very direct clues for the type of task varia-
bles that will iaduce the use of this heuristic process. Classes of

examples implied by his advice are: (1) multi-step arithme;ic prOlems,
(2) problems of two (or more) loci in geometry, (3) alphantheric prob-
lems, and (4) some logic pralems.

The fifth'problem-solying method described is the method of contra-

diction. This method; which essentially involves proving that somegoal(s)
cannot be obtained from the givens, is describedas having four strate-

gies (see Table 5.2).

.106
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Table 5.2 Problem Solving Methods According to Wickelgren (2974)

INFERENCE

Draw inferences from explic4tly or implicitly presented'infor-

mation that satisfy one or both of the following two criteria:

(a) the inferences have frequently been made in the past from

the same type of information; (b) fhe inferences are connected

with the properties (variables, terms, expressions, and so on)

that appear in the goal, the givens, or inferences fram the

goal and the givens (p. 23).

CLASSIFICATION OF ACTION savENcts

Random Trial and Error: Applying ehe allowable operations to

the givens in the problem . . analogous to random sampling

with replacement . . .

Systematic Trial and Error: A generation method that auto-
matically produces a mutually exclusive and exhaustive listing

of all sequences of actions up to some maximum length . .

analogous to random sampling without replacement . . .

Classificatory Trial and Error: The organization of sequences

af actions into classes that are equivalent (or probably equiv-

alent) with respectto the solution of the problem (pp. 46-47).

STATE EVALUATION AND HILL CLIMBING

Defining an "evaluation function" over .all states, including

the goal state.

Choosing actions at any given state that achieves a next state

with an evaluation closer to that of the goal (p. 67).

SUBGOALS

Defining subgoals in order to facilitate-solving the original

problem . . . [or] "analyzing a problem into subproblems" or
"breaking a problem into parts." In essence, the purpose is

to replace a single difficult-problem with two or more simpler

problems (p. 91).

continued
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Table 5.2 continued

CONTRADICTION

Indirect Proof: To assume that the contrary is true and
show that the contrary statement in combination with the

given results in a contradiction (p. 111).

Multiple Choice--Small Search Space: In the solution of
problems [for which we] are guaranteed that exactly

one of a small set of alternativegoals is consistent

with the given,information, systematically examine each
and derive a 'contradiction for all but one of them (p. 115).

Classificatory ContradictionLarge Search Spice: Use some

efficient search strategy for contradicting large sub-
groups of alternative goals at a time (p. 126).

Iterative Contradiction in Infinite Search Spaces

[A method of contradiction] . . . used in problems that
have an infinite number of possible solutions . . . [in

'which we] rule out large or infinite classes of alter-
natives . . . (p. 133).

WORKING BACKWARDS

We start with the goal, but instead of drawing inferences

from it, we try to guess a preceding statement or state-
ments that, taken together, would imply the goal statement.
Hence, the direction of inferences is the same as working
forward--namely, from the given information to the goal.
We start at the end point and try to determine preceding
statements, which need not necessarily be given statements
but which, when taken together, will produce the goal.
Then we try to determine statements that will determine
those statements, gradually working our way back. We hope

to arrive at given information that is sufficient to derive
everything in between the givens and the goal (pp. 137-138).
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The sixth method described by Wickelgren is the method of working

backwards. It is what Pappus has called "analysis" (see Polya; 1957,

pp. 141-147) and is suggested as plausibly useful whenever a"task

satisfies two conditions. One of these "... is that the problem should
have a uniquely defined goal," while the other is that the operations

should be unitary and one-to-one. Task variables that suggest this

heuristic process are rather explicit in these two stated characte--
istics and imply its applicability to such broad classes of probles as
geometric proofs, inequalities, and algebraic and trigonometric identi-

tiea. Problems of the "to find" classification are not as apt to yield
to working backwards, although Wickelgren presents several such problems,

such as the "Nim" family of games, in his exposition.

Wickelgren further suggests that there,are five fundamental rela-
tionships between pairs of problems. These are shown in Table 5.3.

Suffice it tio say that for similar problems the method(s) of solv-

ing one generally provide(s) a substantial amount of useful information

about the method(s) of solving the other. As tHe description of similar

problems (see Table 5.3) implies, the task variables involved change

in content (quantities) rather than in structure. However, prob-
lems are also considered "similar" whpnever mindr,ttructure character-

istics are varied. In particular, variations of*problems that preserve
most essential elements and relations also.preserve, generally, pro-

cesses appropriate for solution.

Wickelgren does not completely characterize similar problems,

although he gives a heuristic discussion of ways one problem may be

simpler than another. It is frequently the case, for simpler problem
creation, that the preservation of abstract relationships among givens
and operations is more important than the preservation of more concrete
similarities. An example of a way to create simpler problems is the
heuristic process "create a special case."

The logical inverse of "simpler problems" is "more complex prob-

lems." One'can, generally, "invert" the heuristic advice for working
with simpler problems in order to obtain appropriate advice for "more

complex problems." Thus, for example, a way to create a more complex
problem is the heuristic process "generalize."

The significance of generalization to problem solving as it relates

to problem relationships is threefold, in Wickelgren's view.

First, as a necessary part of problem solving, we usually
abstract from a problem certain properties belonging to a-
more general class of problems and thus relevant for deter-
mining the previously established principles for solving our
present problem. Second . . . it is often useful to consider
whether we could generalize a solution from it [our problem]

to a wider class of problems, in order to derive a more

general conclusion Third, it may be useful to pose
and attempt to solve a more general problem prior to working
on the current problem. . . . (p. 180),

Ira
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Table 5.3 Relations Between Problems According to Wickelgren (1974,

pp. 153-168)

Equivalent problem: Problems that differ only with respect

to the names attached to different elements of the problem,

but all of whose relations and operations are identical . . .

they are completely analogous or isomorphic.

Unrelated Problems: Problems that are unrelated have no

elements in common.

Similar Problems: Problems are similat if they . . differ

only in the quantitied of certain elements of the problem

. [and have] all of 'the qualitative or structural charac-

teristics . identical or when they.are . . . partly

analogous problems in which the structure is somewhat different

in the two problems being compared but still highly similar.

Simpler Problems: Problem a is simpler than problem b (a and

b may well be similar) implies that many of the.methods used

in solving a are also methods useful in solving b (the more

complex problemmay require one or a few additional methods);
simplicity generally relates to the number of different elements

or complications, but it is by no meats a simple quantitative

idea.

More Complex Problems: Posing a problem that is more complex
is the logical inverse of posing a problem that is simpler

than the given problem.

200
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In his discussion of "Relations Between Problems," the combined

influence of IPS and Polya is clear. From his discussion of isomor-
phic problems (cf. Chapter IV)2to his discussion of generalization
and specialization, the underlying idea of developing a theory of

problems is dominant. The nature of Wickelgren's presentation is
.that of heuristic advice; thus, he is implying a close tie between

a theory.of problems (of tisk variables) and heuristic procvsses.

Research Perspectives (Experimental)

Several studies of the comparative effectiveness of heuristic
methods and other methods, or comparisons of one heuristic.approach
to another heuristic approach, have been conducted. Three of these

will be reviewed here. Ashton (1962) performed an experiment invclv-

ing ten ninth-grade algebra classes. One of two classes of studentu
of above average ability in each of five schools was taught to use
heuristic methods of aolving algebra problems while the other was
taught the "textbook" method. In each school the same teacher taughr

both contrasting methods.

The heuristic method consisted of aiding students in the discovery
of the solutions of algebra problems through suggesting questions from

Folya's list. The "textbook" method provided model solutions or prob-
lem types for imitation and practice, with model solutions being
presented by the teacher and by the textbook. The hypothesis that
students taught to \solve algebra problems by using Polya's heuristic
processes would, after ten weeks of treatment, show significantly

greater gains in solving problems than those.using.the "textbook"
method was sustained by the results of the one-tailed t-test for inde-
pendent samples. Five separate t-tests, one for each of the five
schools, were reported; each showed significant differences in gain
scores favoring the heuristic method (one was significant only at

P .07).

Ashton points out that the subjects of this experiment were all
females. This limitation, as well as the fact that intact classes
were used and individual subjects were considered as the experimental

unit rather than classes, must be noted.

Each of two other studies proposed to determine the effects of

instructing subjects in the use of general versus task-specific heur-
istic processes. These studies, by Wilson (1967),and Smith (1973),
hypothesized that instruction in the use of general heuristic pro-
cesse4 would facilitate transfer to tasks dissimilar to those of
instruction, while instruction in task-specific heuristic processes
(advice not readily generalizable) would be more useful in solving
problems similar to those encountered in instruction. In each exper-
iment, the main dependent variables were time to solution and the

nUmber of correct and relevant steps to solution.

Wilson developed two units of serf-instructional materials

"algebra-proofs" 'and "expressions" (logic proofs), with each unit
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containing three sets: a set on means-ends analysis and one on planning

heuristic processes (with characteristics of the concepts paralleling

those of Newell, Shaw, and Simon), as well as one set on task-specific

heuristic processes. These variables, along with the order of presenta-
tions of instructional tasks, constituted the three independent varia-

bles of this experiment. Thus, a 3x3x2 factorial design with three
levels of training in the "expressions" task (specific, means-ends,
and planning), three levels of training in the algebra task (specific,
means-ends, and planning), and two levels of "order" (expressions-
algebra, algebra-expressions) were used. The problew-solving tasks
that served as posttests were the Expressions Task, Algebra Task, and
Functions Task; transfer tests used as posttests were the Geometry Tests,
Box 9 Test, Maps Test, and Pentominoes Test.'

One-hundred forty-four high school students wto had completed a -
course of algebra and a course of geometry served as the subjects of

this experiment. Analysis on fourteen dependent 'measures (seven for
time; seven for correct steps) yielded the following results:

1. Hain effects were found for:

A. "order" on the Expressions Task on both the time and
correct steps favored the algebra-expressions order.

B. level of heuristic processes on the Algebra Task
favored planning heuristic processes over both other
forms on the time.

C. level of heuristic processes on the Box 9 Test favored
planning and means-ends processes over task-specific
processes on the time variable.

2. Interaction occurred on some dependent measure for each
combination of independent variables.

The general hypothesis was not supported.

The study done by Smith was similar in many ways to that of Wilson.
The general conception of the study was to "strengthen" the instructional
aspects of the Wilson study. This was done by using three rather than

two different task environments of problems representing the general and

task-specific heuristic processes. Further, the planning heuristic pro-
cess became the only form of general heuristic processes so that greater
emphasis could be placed bn the varied ways that this process could be

used.

The Smith study, which involved college subjects (but with only

one year-of algebra and one year of geometry as mathematics background),

employed a 2x3x3 factorial design. Two levels of heuristic processes
(planning and task-specific); three levels of order of presentation
(geometry/logic/Boolean algebra, geometry/Boolean algebra/logic, and
Boolean algebra/geometry/logic) and three levels of order of tests



(same as order of presentation) constituted the treatment. In addition

to learning tests that contained problems related to the instructional

units, Smith administered two transfer tests. One of the transfer tests
was similar to Wilson's Functions Test, while the other involved trans-

formation tasks on ordered triples of integers. Again "time" and
"number of correct, relevant steps toward solution" were the dependent
variables. 0

The results of the analYsis of data showed that the task-specific
instructional group solved significantly more logic problems and com-
pleted-the logic test and the Boolean algebra test significantly faster;
the general heuristic processes instructional group completed the
geometry test significantly faster. No other main or interaction

effects were significant. In addition to the data described above,
Smith obtained information through questionnaires and interviews.
From *..his evidence, Smith concluded that few subjects used the heuris-
tic Avice on transfer problems, but-even those who did not use such
advice did use other heuristic processes in the solution of the test
problems.

Research Perspectives (Exploratory)

The review Of the research literature will be limited to those
studies that have investigated heuristic behavior variables. It will
attempt to determine (1) what heuristic processes have been shown to
"exist" in the procers sequences of subjects, and (2) wLat heuristic
behaviors have been developed as a result of.heuristic in..truction.
In the review, both experimental and empirical-behavioral research
will be included. In a later section, Iddiscussion of the progress
that has been made toward developing process-sequence coding systems
and process-product scoring schemes will be pursued.

The use of "thinking aloud" techniques for acquiring data (to be
discussed later) has been employed by researchers to capture the nature
of the heuristic processes that subjects mayshave acquired, indepen-
dently (supposedly) of formal and systematic study of heuristic
processes. Additionally, it has been used by some researchers who
attempted to monitor the development of subjects' use of heuristic
processes during instruction. Duncker (1945) used thinking-aloud
techniques to obtain data in an attempt to determine how and in what
ways solutions of problems are attained from a problem environ-

ment. His selection of problems was quite atypical of research in the
1930s.and 1940s in that the problems would be classified as non-routine
mathematical and practical problems. They were also probably more
difficult than those used in the typical research of that day in that
they required the invention of solution processes while at the same
time assumed mathematical and practica4 knowledge. Examples of prob-
lems posed by Duncker include:

5.2 For a clock to go accurately, the swing of the pendu-
lum must be strictly regular. The duration of a
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pendulww's awing depends, among other things, on
its length, and this of course,in'turn on the temper-
ature. BUt the clock should go with absolute
regularity. How can this be brought about?

5.2 Why are all sir-place numbers of the form abc,abo,
such as 254,254, divisible by 23?

Through analysis of protocols of subjects, Duncker was able to
identify heuristic processes that ranged from general to te-k-specific.
Further, the observed solution processes paralleled those identified.by
Polya. The identified heuristic processes that arose from Duncker's
analyses included what was called .(1) analysis of the situation and
(2) analysis of the goal. Analysis of the Situation ir,cluded: (a)

analysis of material, a more surface form of analysis involving direct
deductions from the problem elements without (necessarily) "foresighted-
ness" into the use to which the deductions might be put; and (b) analy-
sis of Conflict, which focused on varying certain elements in attempts
to gain "insight" into the relationships among the elements and the

.goal. Analysis of the goal was seen by Duncker as of paramount impor-
tance and included a focus not only on what was demanded by the problem,

but on what might be the predecessor (as statedby Duncker, "what do I
really want" [p. 23]) and what might be nonessential to the goal.

Duncker's analyses of protocols led to his belief that powyrful
heuristic processes are those that (1) are goal oriented and (2)

involve the selection and accomplishment of a sequence of easier

subgoals. Although the work from which these conclusions are drawn
predominantly involves the direct analysis of protocols derived from
independent attempts of subjects to solve problems, on occasion hints
and preparatory probl2ms are provided in order to determine theiii

effects on the solution process. Thus, Duncker recognizes (1) the
difference between task-specific and general heuristic processes, (2)
subgoal reduction and goal-oriented heuristic processes, (3) processes .
of variation of a problem, and (4) means-ends heuristic processes.

Like Duncker, Kilpatrick ,(1967) asked subjects to think aloud as

they solved mathematical problems. Other points of similarity between

the Duncker and the Kilpatrick studies include: (1) the complex
nature of the problems used, and (2) the assumption of content know-

ledge in additiou to the requirement of invention of solution processes.

Much of.Kilpatrick's work is developmental in the sense of creat-
ing mechanisms for analyzing protocol material. His aim is to develop

a way of classifying subjects according to the heuristic processes used
in solving word problems -and to determine how the variables of classi-

fication relate to such variables as aptitude, achievement, and cogni-

tive style. As a part of the process, he develops a protocol coding
system that includes both heuristic processes and non-heuristic
processes, with the heuristic processes being derived from the work

of Poly. A series of preliminary pilot studies was used to perfect
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a workable coding system. Although Polys's.checklist (see Chapter I)

was the starting point for the heuristic processes of the coding system,
considerable refinement (predominantly elimination and clarification)
was necessary for the production of a reliable system that included

the proce3ses used by the eighth-grade subjects of the study. The

major divisions of the processes are: (1) preparation, (2) production,

and (3) evaluation. The-heuristic processes included in these divisions,

as well as the process coding systems, will be presented later.in this

chapter.

Although the coding system developed by Kilpatiick was a majoi part

.of the research effort and has served to spark the development and use-
of related coding systems and process research in mathematics education,.
we shall forego further discussion of it at this time and keturn to the
heuristic processes that KAlpatrick observed in his subjects. . The pro-
cesses used by subjects and found to be reliably codable (high interceder

reliability) included: (1) drawing a figure, (2) using successive
approximation, (3) questioning the existence/uniqueness of the solution,

(4) using a deduction process, (5) using an equation, (6) using trial
and error, and (7) checking the solution. These were taken from the
final coding system that contained both a checklist and a process-
sequence code. Of these processes, drawing a figure and questionitig
the existence/uniqueness of the solution were coded only on the check-
list. e*

Kilpatrick found that the tape-recorded protocols of his 56 above-
average eighth-grade subjects contained the use of only a few of Polya's

heuristic processes. Those observed were: (1) the drawing of figures
while solving problems (found to be unrelatei: to success in solving the
problem or to the use of other processes); (2) the use of trial and
error (frequently) and, to a much lesser extent, successive approxima-
tion trial and error (related to success in solving problems); and
(3) checking work (seldom used except on two or three specific prob-
lems).

In ap attempt to produce meaningful clusters of subjects by-use of

the coding system, Kilpatrick found that the most promising differences

appeared to be in the use of trial-and-error forms in contrast with,
forms of deductive inference. His final classification of subjects
was into four equal-sized groups as folloum:

(a) subjects who, at least once, attempted to set up.an
equation in solving the problem.

(b) subjects wh6.attempted trial and error before_attempting
deduction.

(c) subjects who, by comparison, used trial and error with
moderate frequency, and

(d) subjects who did not use algebra and who used trial and
error infrequently.

4

. -4,,44,40
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Kilpatrick found the subjects froskthe first group, when classi
fied in this way, were,' on the average,,high in quantitative ability,

high in mathematical achievement,,and of a reflective conceptual tempo.

. Those of t e second group were high on quantitative ability, moderately

high in hematics achievement, and of a,reflective conceptual tempo. 4

In cont , the third group stood bet*een the second and the fourth

group in titude and achievement and were moderately impulsive, While
the fourth -groupwere, in general, lowest in mathematics achievement
and aptitude andwere the most impulsive (pp. 100.-101).

lysis of problem-solving processes
have been modified in several subse-
(1975) conducted an exploratory study
in-a second year of algebra. Three

The coding system and the ana_
as suggested by Kilpatrick's work
quent studies. For example, Webb
involving 40 high school students,
aims of the study were:

(1) to determine relations among cognitive ability, problem-
solving ability, and the use of problem-solving processes.

(2) to categorize selected heuristic processes as problem-
specific or general (categorizatiOn to be accomplished
with respect to use by the subjects of the research).

(3). to lute "sets of processes" as a means of identifyIng
crlusters'of students according to the problem-solving
modes they employed.

In terms of the analysis, Webb employed.regression analysis to
answer the first question, the Cochran Q test to answer the second,

and cluster analysis to answei the third. From these analyses, Webb
found that mathematics achievement was, by comparison,-highly related .
to the problem-solving scores; it accounted for 50 percent of the

variance of the total scores. Verbal reasoning accounted for an
additional 5 percent (a significant amount at the .05 level), and the
heuristic process, pictorial representation, accounted for 8 percent
of the variance beyond that for which the pretest components had
accounted.

Webb,'like Kilpatrick, limited the detailed analysis of heuris-
tic processes to those of relatively frequent occurrence and to those

with intercoder reliability in excess of .88 (wilth two exceptions for
'. particularly interesting processes). The Cochran Q test was used to

determine, based on the use of the heuristic proCesses by the subjects,
th e ones that were problem-specific s opposed to-general processes.
Problek-specific heuristic processes' dentified were: uses mnemonic
notation, draws a representative diagram, recalls a related problem,

uses inductive reasoning, uses specialization, uses successive approk-
imation, checks the solution by substituting in-an_equation, and checks,
that the solution satisfies the condition. Webb used the decision rule

that, "a process is a general heuristic process provided the Percentage

.of use of the process is no ereater for some problems than for others."
Applying this rule, "deriving A solution by another method" and "having

2n6
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-a bright idea" were found to be general heuristic processes (p. 95).

A more complete description of research related to general versus
task-specific heuristic processes was included in the review of the
studies by Wilson-and by Smith.

Finally, Weblhescribed three problem-aolVing modes as charac-

terized by heuristic processes. The three groups representing the
modes were as follows:

(1) subSects who used a wide range of strategies,

(2) subjects who did not use "checks the solution by sub-
stituting in an equation," "checks by specialization,"
or "derives the solution by another method," and

(3) subjects who did not use inductive reasoning, general-
ization, specialization, or successive approximation.

In comparison with Kilpatrick's subjects, Webb's subjectsperformed as follows:

(1) those who used equations and trial and error moderately
and who made few structural errors performed best on a
problem-solving perfoxmance measure,

(2) those who used equations relatively more frequently but
used trial and error relatively infrequently were more
intermediate in their problem-solving performance, and

(3) those who used trial and error relatively more frequently
and equations relatively less frequently were the least

adept problem solvers (p.. 96).

Thus, Webb found that subjects tnvolved, in a second year of
algebra, in contrast to high-ability eighth-grade subjects of Kil-
patrick who had not been taught algebra, were more successful as
problem solvers when they made greater use of equations and supple-
mented this process with trial and error.

Blake (1975), like Webb, examined problem-solving processes of

,eleventh-grade subjects who were engaged iva second course of algebra.
He obtaintA thinking-aloud protocols on each of five problems from 40

subjects randomly selected from 14 different schools. The subjects

had an I.Q. range of 115 'to 125. Blake administered the Embedded
Figures Test to the subjects to classify them as field independent or
field dependent. He also administered twortypes of tasks which were
classified by context as either real-world setting or mathematical
setting.

Using a model of mathematical problem solving based an the work

of MacPherson, Blake Sought answers to the following questions:

(1) What heuristic processes are used by students of algebra

in the solution of mottleAatical problems?

2,11
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(2) What patterns are exhibited in the use of heuristic
processes in solving word problems?

The MacPherson problem-solving model involves three major components:

(a) knowledge of mathematical content (called "core"), (b) heuristic pro-

cesses, and (c) application (called "lore"). Blake devised a process

coding system (to be discussed in more detail later) that incorporated

the elements of the'MacPherson model. 16 particular, it included the

heuristic processes: (a) smoothing, (b) analysis, (c) cases, (d) tem-
plation, (e) deduction, (f) inverse deduction, (g) invariation,
analogy, (i) symmetry, (j) preservation, (k) variation, and (1) extension.
Except for smoothing, templation, and preservation, each of the Processes

was defined similarly to processes from Polyi's list. Templation is
essentially a category that includes recalling related problems and
recalling results and methods, much as Polya defines them. Preserva-
tion deals with extending the properties of a mathematical system con-
sistently, while smoothing is defined as altering a problem so as to
produce an isomorphic problem in a mathematical system. Smoothing is,

in a sense, a heuristic process appropriate for the "mathematical model-

ing" in "applied" problem solving.

In mild contrast to the study of Webb, who found a relatively large

percentage of variance attributable to mathematical achievement (20 per-
..

cent) and d'smaller percentage attributable tc.heuristic processes (13
percent), Blake concluded that heuristic processes and "core" account
for approximately equal amounts of variance. His analysis indicated
that 41 percent of variance could he attributed to heuristic processes
and 40 percent attributed .to "core," with a ''common-shared" 20 percent
of variance. (in comparison tá 40 percent "shared" in the Webb study).

In addition, Blake found considerable evidence of the use of random .

cases (three-fourths of the subjects used it at least once) and sequen-

tial cases (over half of the subjects used it more than once), as well

as some evidence of critical (special) Cases. He further concluded that
these trial-and-error processes related closely to correct solutions.
In contrast, Webb concluded that trial-and-error processes were related

to success in problem solving only when used moderately in conjunction

with deduction.

Blake found that templation and random cases" were the most fre-
quently occurring processes in the otdcols, with three-fourths of the

subjects using these processes (ove half of the protocols contained
multiple occurrences). 'He also fou.- analysis (subproblem decomposi-
tion), smoothing, and sequential cas (suc essive approximation) in

protocols of one-fourth of the subjects. urther, trial and error,
direct deduCtion, variation, and inverse deduction (working backwards)

were the only other heuristic processes observed, and they were observed

iafrequently.

Further conclusions from this exploratory study that involved no
instruction are:

(1) Total number of heuristic processes used and the number of
different heuristic processes used are positively related

211 ofi
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to success in problem solving and.contributed significant
amounts of variance to'the number of correct solutions.

(2) Field independent subjects use "higher order" heuristic
processes, use a greater varie6, of heuristic processes,

change their problem solving mode more readily, and solve

more problems correctly than do their field-dependent

counterparts.

(3) Subjects rely heavily on "core" dm their attenpt at solu-
tion, and they use "templation" most frequently of any
heuristic process. However, Blake concludes that they
are-"ineffective" in their use of templation.

In contrast to the research of Duncker, Kilpatrick, Webb, and
Blake, who sought to find out what heuristic processes were used by

subjects independently of instruction designed to prepare subjects In
heuristic processes, researchers such as Lucas (1972) and Kantowski

(1974) sought to find out what heuristic processes would be used by
subjects who were specifically taught by and about Polya!s maxims.

The research of both Lucas and Kantowski was clinical-exploratory;
both described the associated teaching as heuristic teaching. The
following paragraphs will describe the studies of Lucas and Kantowski, .

respectivelv,.and summarizgl.their ftndiligs as.they relilte to the devel-

opment of heuristic processes.

The Lucas study was a diagnostic-behavioral study in the sense that
audio-taped problem-solving interviews of subjects were collected both

before and after diagnostic instruction. The pre-instructional problem-
solving interviews contributed to the design of instruction. The -

subjects of the study were classes of 27 and 25 students of Calculus I.

The class of 27 received heuristic-oriented instruction, while the class

of 25 was the control group. Eight of the 27 and six.of the 25 students
were interviewed prior to their respective instructional'phase; the same

eight 4nd six students and an additional nine and seven students were

involved in individual tape-recorded post-instruction problem-solving

interviews'(pp. 273-275).

Lucas modified and extended the process coding scheme of Kilpatrick

for use with the first-year college students of hi.s study. The major,.

changes were the addition of several heuristic behavior categories and

the omission of several non-heuristic behavior categories. nese changes,
which.sfere based on a pilot study, will be discussed in more detail in a

later section of this chapter.

A sumumry of the results of the study will answer the questions

,posed by Lucas:

(1) He found that Kilpatrick's system of behavioral analysis
(a process-sequence code and a checklist) could be satis-
factorily modified in terms of reliably codable processes
for analysis of problem-solving in the content area of
calculus.
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(2) In answer to the main ques*ion, "What heuristic processes
are subject to change under heuristic instruction," Lucas
found the following:

(a) the kind of notation,.

(b) applying the method of a relatea problem,

(c). applying the result of a related problem,

(d) reasoning by analysis, and

(e) organizing data.

He did not find effects on such heuristic proCesses as drawing or modi-

fying a diagram, looking back, trial and error, reasoning by synthesis,

or productivity (relationships, equations, or algorithmic processes) ,

(Lucas, 1972, pp. 427-428).

Kantawski performed a "teaching experiment" (in the sense 'of Soviet

research) on eight students of above-average ability. Using geometry as

the mathematical content Area, the longitudinal clinical study involved

four phases. Students were asked to "think aloud" as they solved eight
problems at the outset of this exploratory study of mathematigal pro-

cesses. Then came a "readiness for instruction" phpse thatiaccustamed

the sUbjects to heuristic instruction. Following the-administration of
another pretest,, students were taugtit three units of geometric content

through heuristic instruction. Interspersed throughout this instruc-
.tional period were mid-unit and end-of-unit tests. The final phase
involved a.prerequisite knowledge test and a geometry and verbal prob-

lems test on which the students were again asked to think aloud.

The written and the tape-recorded.thinking-aloud protocoli were
subjected to a protocol analysis and each problem was given a process-

product score. The process-sequence was'again based on a modification
of the coding scheme of Kilpatrick. Process-product scores were given
for each of 44.problems solved by each of the eight subjects. Each

individual's median score on the 44 problems was computed and was used
as a basis for judging the relationship among problem-solving processes

as problem-solving ability develciped (over time).

Ten questions were posed to guide the. analysis. Six of these ques-,

tions are directly related to heuristic processes and will be discussed

in the following paragraphs. In answer to the question "Is Oere a
relationship between the tendency to use heuristics And success in

problem solving?", Kantowski found that heuristic processes were evident

in 59_to 95 percent of the solutions whidh had scores above the indi7
vidual's median score, while 52 percent or fewer of the problem solutions
with scores below the individual's median contained evidence of the use

of heuristic processes (pp.'52-67).

Taking process-product scores above tha-individual's median as evidence ._.

of "success inproblem solving," Kantowski concluded quit "the tendenty

to use heuristics increases as problem-solving ability develops."
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Support for this conclusion was that on the pretest, there was fram 14

to 72 percept use of heuristic processes (with the median subject having

a percentabe of'36), while on the posttest there was from 14 to 100 per-
eent use of heuristic processes (with a median percentage of 72).

Additional support was obtained from the unit tests. on Test Block I

there was from 17,to 50 percent use of heuristic processes (with a median

.percentage of 25), on Test Block /I there was from 32 to 84 percent use

(with a median fercentage of 47), and on Test Block III there was from

31 to 100 percent use (with a median percentage of 77) (pp. 68-69).

Kantowski found strong evidence to indicate that successful prob-

em solvers exhibit more regular patterns of analysis ("decompose"
heuristic process) aid synthesis ("recombine" heuristic process) in

their process sequences. From 77 to 100 percent of the subjects' solu-
tions (with a median percentage of 95) did exhibit such patterns, con-
sidering only solutions for which scores were above the sUbject's median

process-product score. From 18 to 41 percent of the solutions with
scores below the subject's median exhibited such patterns (with a median

percentage of 23). Furthermore, the interrelationship between analytic-
synthetic patterns and heuristic processes was quite evident in problem

solutions. Kantowski concluded that goal-oriented processes, those
processes specifically related to the conclusion of the problem, tended

to occur in solutions that are more efficient, and they tended to precede
immediately regular.pattlerns of analysis and synthesis (p. 106). In fact,

from 50 to 92 percent of solutions witii scores above the subject's median
contained the use of analytic-synthetic processes and other heuristic

processes in combdnation. At most, 33 percent of the less-successful
attempts at problem solution contained these processes in combination

(p. 71).

With respect to "looking back" heuristic behaviors, protocols

provided very little evidence of the use of these behaviors. Further,

an increase in the use of these processes was not evidenced as
problear-solviUg ability developed.

Finally, there was evidence of the use of related problems in prob-

.1em solutions. The evidence relating previously.solved problems and

success in problem solving was gathered on problems that occurred in

more than one of the test batteries. Subjects yere observed to recall

and use both the results of related problems and the.methods of related

problems.

In summary, Kantowski's teaching experiment suggests that subjects

given heuristic instruction were Aserved to increase their use of
heuristic processes as problem-solving ability developed and that

success in solving Voblems was directly related to their use of these

heuristic,processes. Most proiounced in the protocols were regular,
patterns Of analysis and synthesis and goal-oriented processes,

"ifisight" in the form of .either,a general .or_a lask-rspecific heuristic
process related to the goal tended to initiate the regular patterns of

analysis and synthesis. Little use of such processes as "looking back"

was observed.

21 z
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-The investigation of processes used in.solving mathematical prob-

lems is a prominent area of research in the Soviet Union. One of the

most thought-provoking and penetrating series of analyses centers

around the work of Krutetskii and his colleagues (1976). This inves-

tigation, of more than twelve years duration, was based on some 26

series of problems, containing from one to, eight tests per series

and from one to sixteen problems per test. The layout of the problem

dolving task instruments is given in Table 5.4.

The table demonstrates the breadth and depth of problem types,
classified by Krutetskii's view of mathematical abilities. Any prob-

lem of a set, according to the design of the sets, was apt to evoke
the "ability" from subjects with the ability to which the set related.
For example, "flexibility of thinking" is a general label for an
ability hypothesized by Krutetskii. Four sets of problems: Series

XIII (Problems with Several Solutions), Series XiV (Problems with
Changing Content), Series XV (Problems on Reconstructing an Operation),

and Series XVI (Problems Suggesting Self-restriction) were used by
Krutetskii to assess the.existence and the quality of development of
the ability "flexibility of thinking."

Examples of "problems with several solutions" are given

below:

5.3 In how many ways can 78 rubles be paid if the money
is in 3-ruble and 5-ruble notes?

5.4 Four liters of uater at room temperature.(15°C) were
added to 3 liters of water at a temperature of 36°C.
What temperature was established in the vessel? (p. 136).

Examples of "problems with changing content" are the following:

5.5 A horse moved at a speed of 12 kw per hour fbr half
the time spent on a jourrey, and 4 km per hour for
the rest of the time. Find the horse's average speed.

5.6 (2nd variant: "travelled half a journey at a speed
of 12 kw per hour, and at 4 km per hour for the rest
of the journey") (p. 138).

These problems represent tasks designed to evoke acttvity from
which Krutetskii inferred the'existence of flexibility of thought in
subjects who were "successful" in solving them. Additionally, a certain

sense of varying "quality" of flexibility of thought was "evident" in
the responses of "capable" as compared with "average" or "incapable"

subjects. Krutetskii gathered thinking-aloud protocols and provided

7 2
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Table 5.4 Krutetskii's System of Experimental Problems fbr Investigating
Schoolchildren's Mathematical Abilities*

Category Group Series

Information
gathering

Perception
(interpretation
of a problem)

Information Generalization
processing

Flexibility of
fhinking

Reversibility of
mental processes

Understanding;
reasoning; logic

Information Mathematical
retention memory

Typology Types of mathe-
matical ability

21.3

*Krvitetakii 1976. vn. 100-104

I. Problems with an unstated
questi.Jn

II. Problems 4ith inco:!plete
information

III. Probiems with surplus infor-
mation

IV. Problems with interpenetrat-
ing elements

Systems of problems of a
single pype
Systems of problems of
different pypes
Systems of problems with
gradual transformation from
concrete to abstract
Composition of problems of
I given gype

IX. Problems on proof
X. Composition of equations

using the termsof a problem
XI. Unrealistic problems

XII. 'Formation of artificial con-
cepts'

XIII. Problenswithseveralsolutions
XIV. Problemswith changing content
XV. Problems on reconstructing an

operation
XVI. Problems suggesting "self -

restriction"

XVII. Direct and reverse problems

XVIII. Heuristic tasks
XIX. Problems on comprehension

and logical reasoning
XX. Series problems
XXI. Mathematical sophisms

%XII. Problems with terms that are
hard to remember

XXIII. Problems with varying degrees
of visuality in their solution

XKIV. Problems with verbal and
visual formulations

XXV. Problems related to spatial
concepts

XXVI. Problems that expose correla-
,tions between visual-pictorial
and verbal-1ogical components of

oonsathematical intellectual activity.

abridged by Goldin (1977).
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excerpts of these to illustrate ihe comparison of the existence and
.quality of this ability in various subjects. a

The examples given here, as well as others in these series, are
convincing evidence, upon at,least minimal scrutiny, that the careful
"engineering" of tasks is fruitful for evoking the desired behaviors.
It is very plausible that a subject who can perform "many" of the
following activities is more flexible in thought than one who can do
"few" of them. 1 it

Refer to Problem 5.3:

(a) Note that 78 rubles is the same as (75 + 3) rubles
or 15 five-ruble notes,and 1 three-ruble note.

(b) Note that 5 three-ruble notes are equal in value
to 3 five-ruble notes; that.113 three-ruble notes
equal 6 five-ruble notes, etc.

Refer to Problem 5.4:

(c) The weighted average of 4 x 15° and 3 x 360 la 240.

(d) The temperature Will be 3/7 mf the "distance" from

(e) 36°

15°

Refer to Problems 5.5 and 5.6:

(see Krutetskii, 1976, p. 279)

(f) The average speed in the problem is the average
of the speeds, and by contrast in the second
variant the average speed is the total distance
divided by the total time

(g) The average speed in the second variant is inde-
pendent of the length of the journey; whereas the q

average speed in the original problem is independent
of the time.

214
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A most fundamental assumption underlying this enormously involved
and fruitful complex of investigations is that problem tasks can be so

composed that they extract from the experimental subjects the varied
mental-psychological operations that characterize their mathesatical

abilities. Throughout these studies, certain series of tasks were
administered to subjects classified as capable, average, and incapable
so as to analyze the thought and problem-solving processes and how
they relate to mathematical abilities. As another example, four or
five of the tasks were designed to extract from subjects their ability
to reverse their mental process. The fundamental assumption underlying
these problem tasks was that subjects who could reverse their mental
processes would be led to do so by these tasks and would be successful

in solving the problems of these series. On the other hand, subjects
who could not switch from one mental operation to its reverse would be
less-able (or relatiyely less successful) in solving these problems due
to the underdevelopment-of the ability (n)t due to the lack of an
appropriate type and intensity ciestimulation from the task presenta-
tion or of Inadequate content knowledge).

The basic connection of heuristic reasoning to the complex of
investigations carried out under the direction of Krutetskii is that
"heuristics--the study of the ways and means of problem solving, par-

. ticularly the mental operations involved in it" (Polya, 1957)--focuses
s 'Upon the mental operations or mental activity. I

Similarly, Krutetskii . .

states that his work was intended ",. . to reflect the basic specific
character of mathematics within the framework of the demands it makes
on a person's mental activity." Krutetskii is, of course, interested
in the cognitive and psychological aspects--the mental operations--
required to characterize a "capable" mathematics studenes.thinking.

Although heuristic processes and mathematical abilities share the
common characteristic of being based immental activityr thought and

operations of.thi mind related to and inferrable from these mathemati-
cal activities differ in.rather significant ways. Heuristic processes

are volitionally related processes. As Polya indicated, his'desire is

that ". the'student may absorb a ,few of the questions. . . so well
that he is finally able to put ,to himself the right question at the
right time and perform the corresponding mental operation. . (1957,

p. 4); thus, he.implies the deliberate, volitional nature of question-,

based heuristic processes. In contrast, mathematical abilities are
more a product, a synthesis of mental processes. Krutetskii iafers the
definition of mathematical abi4ties from his definition of ability to
learn mathematics. [He is, in context, making reference to abilities
in school mathematics.] Tha individual paychological traits undergird-
ing the creative mastery of mathematics, including the rapidity,
fluency, and thoroughness of mastery of mathematical knowledge, skills
and.babitsiare indicative of rAthomAtiral abilities in Krutetskii's

view (1976, pp. 74-75). He further emphasizes that abilities derive
from a synthesis or a combination of mental processes such as percep-
tion, memory, attention, imagination and thought, to mention a few
(p. 753)k

zrs
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Thus, heuristic processes are mental operations, acttwfties and

the like, volitionally controllable or initiatabls,'that direct,

organize, plans, and Conduct the problem-solving process. Mathematical

abilities refer to the relatively more involuntary, more synthetic com-

binationsof mental processes that assume a degree of success'in all

domains for which the particular ability or abilities are "suitakle."

Referring to the examples of "flexibility of thought" mentioned earlier,

the evidence Krutetskii presents of capable students' activity in these

examples is worthy of note. Their solutions demonstrated "mental
freedom" to "look at" a problem one way, and solve it, then to "look
at" it another way and produce a very different solutimm in terms of

representation and process; to "know° how many solutions to expect in
"multiple solutions" problems and rapidly to find all of them; to
attack.similar but contrasting viriants of the same problem and to
"cut through" the less relevant features and immediately abstract the
contrasting features of problem structure, in a sense avoiding mental
fixedness; and to avoid remaining "fixed" on cetain possibilities to
the exclusion of others.

Techniques far Coding and Scoring Problem-Solving Processes

Thinking Aloud, Retrospection, and Introspection

The definition of heuristic processes, be it related to Polya's
idea of the mental operations typically useful in discovery and inven-

tion in problem solution or to the IPS ideas related to the tech-
niques for selecting and ordering the search'for solution, implies that

the collection.of data on which to base observation must be objective
and undistorted.and'must be "externalized" and seqnenced among the

total set_of protilem-solving behaviors. In order to "see" the influ-
ence of the problem task on the heuristic processes employed in its
solution, a complete record of problem-solving effort on the task must

be captured.

In this country, Kilpatrick (1967) initiated the use of thinking
aloud as the presently most appropriate "way for getting subjects to

generate observable sequences of behavior" (p. 4) in the realm of pro-

cesses used in mathematical problem solving. Drawing from available
methods for collecting data related to "thought" and using Polya's
problem-solving model, Kilpatrick saw the necessity for collecting'

as complete and undistorted a "motion picture" of the entire solution
process as is possible in order to be able to analyze the temporal,
behavioral manifestations of the mental operations involved in the
problem-solving process.

Psychology has used four basic methods of -gathering data-,on-com-

plex tasks. Retrospection, introspection, material/mechaaical "choice"
devices, and thinking aloud have all been used during this century to
"get close to" thinking.

04:
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Retrospection is a self-reporting technique in which the subject

who is asked to perform a task is also asked reflectively (after the

fact) to describe his or her thinking as the task is performed. In

problem solving the search for sol4tion often involves false starts,

following.paths that lead to blind alleys, end exploration of widely

differing alternatives. Hidamard (1945) and Poincere (1908) both

suggest that sudden inspiration and flashes of insight often precipi-

tate a solution. The-time sequencing, for example, of the occurrence

of exploration of particular alternatives, the discovery of a blind

alley, and flashes of insight, though particularly crucial for under-

standing the solution process, are subject to editing, reordering, and

distortion from incomplete memory when retrospection is the source of

data collection.

Introspection is.also a self-reporting technique which is depen-

dent upon the subject who is solving a problem simultaneously to solve

the problem and report the internal (including mental) and external

forces in operation along the entire solution path. Used by Binet

(1903) in the early part of the twentieth century, introspection was
successful in getting "thought" externalized, but it requiied much

time both in preparing a subject to introspect and in collecting the

data after the training and practice in the technique of introspect-

ing had been completed. Consider the time consumption involved in .

tape-recording the solution of a complei problem. The relative amount

of time involved in introspectively solving a problem can now be esti- .

mated by adding to the time of solving the problem the time one would
take to explain.carefully all aspects of the solution process (much

like recording yourself solving the problem and then "teaching" another

person to solve the problem). Two basic difficu1ties,with the method
of introspection as a tool for data collection are r ognized and

regarded as insurmountable difficulties. These are he disruption

of thought by introspecting, along with the implied oss-of temporal

sequencing and the lack of observational reliability. The observa-

tional reliability-difficulty'(see Johnson, 1955)'is basically that
different interpreters (analyzers) of the introspectively collected
data infer.very different "qualities of thought" from,the same data.

The difficulty is, at least partially, a problem of attaching various

levels of confidence to the introspective accounts and of inferring

sequencirg of processes and relationships among processes that are

"clouded" by interruption caused by taking time out to introspect.

The use of material devices, such as the well-known "envelope

test" of Lazerte (1933) and mechanical devices such as branched-program

machines (the autotutor and the Problgm-Solving Information Apparatus),

is a third method for collecting data on processes involved in solving

problems. These devices, though somewhat effective as tools to assess
certain decision-making skills, have severe limitations as data-

collecting methods for complex problem solving. The most obvious and

most serious drawback is that the device!' are "pre-programmed" withthe
options and as a result may lead the subject through a solution path

rather than allow the subject.to discover and/or devise a solution.
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Thinking aloud is a method most commonly agreed upon (Taylor;
1966; Kantowski, 1974) as the most valid means available today
for collecting data on problem-solving processes. AB Kilpatrick
states, "There is one method of getting subjecy to produce sequen-
tially-linked, obeervable behavior that requires neither skill ia
salf-observation nor the manipulation of mechanical devices: have the

subject think aloud as he works" (1967, p. 6). As Taylor pointed out,
"The use of 'thinking aloud' has repeatedly proved fruitful in the
analysis of process" (1966, p.'123). What makes it fruitful is that
it eliminates or at least minimizes the shortcomings of retrospection,
introspection,and material/mechanical devices. There in not the edit-

ing and distortion from incomplete memory as is potentially present in
retrospection,since thinking aloud reports activity and thought in the
time sequence of their occurrence. Thete is not the disruption ot
thought to introspect nor the loss of temporal sequencing of thought
and activity associated with introspection, since thinking'aloud does
not require the subject to stop and interpret thought and activity;

ZAther, it is reported as it occurs. Again, there is not the external
imposition of a "structure" on the course of solution--a "pre-
programming" of an externally imposed set,of options as with the
"envelope test" or the autOtutor; rather, the solver is free to create
and try whatever options, processes, actions, and activities he or she
chooses-in the attempt to.devise a solution.strategy. A,4ition4ly,
the data arising from thinking aloud permit a full range of observa-
tions, including all verbalized'and written,attempts at solution as
well as whatever notes an observer may wish to take as the.subject is
being observed.

Two categories of thinking aloud methods appear to be emerging in .

mathematical problem-solving process research. These relate to whether

the subject is being observed by an investigator oi is privately record:-
ing problem-solving episodes. The strength of each of these thinking-
aloud methods may well be the weakness of the other. The presence of
an observer allows "prodding" the student to talk in those moments wben
he or she may fall silent; also, the observer may make-notes to provide
a more complete "picture" of the problem-solving process (for example,

noting what was written; in wbat order, related to what verbalization).
An inherent difficulty with the presence 'of an observer is that the
subject may be inhibited by the pregence or verbal statements of the
observer. Similarly, having someone physically present may cause a
subject consciously to change his or her activity and verbalization,__
On the other hand, the more private ribording,of problem-solving epi-
sodes may lead to the opposite difficulty. Without the reminder and
conscious awareness that obfective data requires complete verbalization
and complete outpouring of attempts, a subject may lapse into silence,
provide only sketchy written supplements, or may even erase portions
of the solution attempts.

p.
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Process-Sequence Codes and Process-Product Scores

Recent research related to che processes involvedin
mathenatical problem solving has necessitated the development nf

coding schemes and scoring procedures forthese processes. In 1967

Kilpatrick developed a coding System that subsequently was used, in

modified form, in several process-oriented research efforts. The
evolution of the Kilpatrick (1967) process sequence coding scheme
will be described together with the modifications by Lucas (1972)
and Kantowski (1974), as well as a somewtat different approach by .

Blake (1976). Following this discussion, effOrts,0 date to produce
a scoring system that includes process as well-es-products in the

evaluation will be presented.

The preliminary, approach taken by Kilpatrick toward produciag a
workable process coding system involved the creation of:a checklist of

36 questions taken from Folya's "How tu Solve It" list (see Chapter I).

Attempts to use this checklist led to the conclusion that large numbers

of these heuristic processes were not used by the pilot-study subjects
and the processes could not be reliably coded. Kilpatrick then reduced

the list to a set of "behaviors"(see Table 5.5). Those contained in
the reduced list were processes that.could.be coded reliably, Were used

by the subjects, and were central to the purpose of the research.

This checklist allowed A counting of the number of heuristic pro-
cesses used by i given subject as well as a comparison across problems.
Yet the amount of process-related information "lost" in its application
led Kilpatrick to construct other systems that incorporated the sequenc-
ing of behaviors. A preliminary system for proces::-sequence coding
that included 21 "terms" (problem elements, either completely specified

or unspecified), 67 "processes" grouped intd 10 categories (e.g.,
recalling information, looking ahead), 11 "modifiers," and 8 "punc-

tuati)ns" was found to be unwieldy due to its "size" and the require-
ment of "fine distinctions" of processes (for a complete description,

see Kilpatrick, 1967, pp. 48-50, 140-148).

Kilpatrick thep evolved the coding system shown 1,, Table 5.6,
together with a cheVklist that was used for recording a wider variety

of behaviors than those iequence-coded. A more complete description
of the use of the coding system and the checklist vill occur as other
coding systems are discussed; however, a complete description co.f the

application of such coding systems will be reserved for Chapter

The abalytic tools for examining processes involved in mathematical
problem solving that Kilpatrick developed were modified by Lucas and by

Kantowski in preparation for studies of problem solving in the content

areas of calculus and geometry, respeCtively. Each of these researchers

maintained (1) the chucklist approach, (2) the process-sequence coding
approach, and (3) major portions of the process codes as well. They
did, however, modify J3everal codes and introduced others so as to cap-
ture additional processes of geometry and calculus subjecte, while at
the same time making finer distinctions ia such processes as deduction,
use of diagrams, and use of standard processes (equations and algorithms).

21 9
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Table 5.5 Kilpatrick's ModifUd Checklist

A. Understanding the Problem

I. Identifies unknown, data,
or condition

2. Cheeks steps before finding

2. Draws figure results

3. Introduces notation D. Looking Rack

C. Carrying out the Plan

1. Uses successive approxiaation

B. Devising a Plan

1. Rephra8es problem

2. Considers a related problem
(special cases or part of

problem)

1. Checks that result is reasonable

2: Checks that result satisfies
condition

3. Retraces steps of argument

4. Derives results by another method

(Kilpatrick, 1967, p. 46)

Table 5.6 Kilpatrick's Process-Sequence Coding System

TIEP.SEAS.

Production

Evaluation

Number Following
Production Processes
_Symbols

Modifiers

Process Symbols

R it Reading dnd trying to understand problem

D --Deduction

E-= Setting-up equation

T = Trial and Erro,T

C Checking Solution

1

2 Impasse
3 Intermediate Result
4 i Incorrect Result
5 Correct Result

liar over symbol = structural error in process (used only with

symbols for production)

Underlined symbol Difficulty (hesitation, repetition) in process
,

Punctuation

inserted between successive processes

/ work stopped without solution

. work stopped with solution

1Kilpatrick, 1967, pp. 154-155)
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Table 5.7 Lucas' Prome-,Sequence Coding'Systom

Process Sequence Variables

R Reads the problem

S Separates/Summarizes data

Mf Introduces model by means of a diagram

Me Modifies.existing diagram

Mfc Introduces diagram with cnordi9te system impossd

DS Deduction by synthesis

DA Deduction by analysis

T Trial and error: successive approximation

An Reasoning by analogy

Me Model introduced by means of equatiop, expression, or other

relationship

Alg Algorithmic process

N 'Not classifiable

C Checks the result

Vs Varies the problem (by analogy; by changing conditiond)

Outccmies of DS, DAL T Processes

1 Abandons process

2 Impasse

3 Incorrect final result

4 Correct final result

5 Intermediate result (correct or incorrect)

Punctuation Marks

- (dash) hesitation of Approximately 2 units (30 seconde)

( ) scope of DS, DA, or T process

9
inserted between'successive processes

stops without solution

stops with solution Icorrect or incorrect)

,Errors

over process symbol m. structural error
in processiq

Je aver process symbol executive error in process

* (asterisk over error symbol) m previous error of type

II indicated was corrected

(Lucas, 1972, pp. 443-444)

2ez
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Table 3.8 Kantewski's Prooses4equenot Coding System,

Processes

ft Reads Problem

Repirates or summarises data or marks diagrel,x

Sc Summarizes conditions

Rephrases question

Vd Draws diagram

T. Adds auxiliary construction

Satggeste plan for final goal

Pi 'Suggests plan for intermediate goel

Pi States thearem to use

Po States operation to use

Utho States theorem/operation used

Suggests 'needed datum

Dais Deduction (analysis/synthesis)

Dd Deduction from diagram

O Uses alternati concept implied by data

Uses induction

Tr Uses random trisl and error

To Uses successive 'approximation trtal and error

Introduces variable

ft Introduces equation

A Uses algorithm

C Checks solution

Ca Introduces alternate procedure

Cs Tries to simplify proof

Co Suggests new problem

ft Ras forgotten or does opt know how to do problem

Outcomes o
1 Abandons prates*
2 Impasse
3 Correct final results
4 Correct intermediate result
5 Incorrect result

Punctuation

Inserted between succissive processes
naps withOUt solution
Stops with solution

Error

Ai Structural

4, Executive

Over symbol m corrected

(Underline) -- difficulty with proem

-(Nantowski, 1974, pp. 141-142)
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Table 5.9 97,4ka's Process.44quence Co&ng Sysum

Reading probfem

Request definition of terms

Recall same prdblem

Recall related problem

Recall protasis type

Recall related fact

Dram. diagram

Modify diagram

Dientify varieble

Setting up equations

Algorithmsalgabraic

Algorithnearitheetic

Guessing

Smoothing

Analysis

Tesplation

Cases--all

Casesrandom

Casessystemstic

Casescritical

Casessequential

Deduction

Inverse deducttm

InvariatiA

Analogy

Symmetry

Obtain solution

.Chacking part

Checking scautimm

bY Anbst. in equation

by retracing steps

by ressonable/realiatic

uncodable

Zip. concernmethod

Esp. concernalgorit*

Exp. concern--equation

Rep. odecernsolutima

Work stoppedsolution

Work stopoodno solutimm

2e3,

111111111111111111

1111111111111111111

111-111111111111
111111111111111111MUM
11111111-1111111
1111-111111111111
1111-1111--
1111111111111111111

111111111M-
111111111111111101

11.1111-111111
1111111111111111111BM=
11111111111111111

11111011111111111

-111111111-11
11111111111111111
11111111111111111111

11111111111111111
11111111111INI
111111111=111
111111111111111111

111111111111111111

111111111111111.1
111111111111111111

111111111111111111

11111111111111111
11111111-111111
1111111111111111111

11111111111111111

111111111111111111

11011011111111111
1111111111111-1111

EMS 111
(Slake, 1976, p. 142)
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These wore complex process-sequence coding schemes were built

upon Kilpatrick's firm basis. These schemes, presented in Table 5.7

and Table 5.8, generalized the codable behaviors used by supposedly

more sophisticated problem solvers than the pre-Algebra subjects iihose
behavioesKilpatrick analyzed, and were found by the resaarcheri to be

relidbly usable aid representative of their-subjects! problem-solving

behaviors. It should be noted, by point of contrast, that the

Kilpatrick scheme focused on production processes, implying that each

process ended with a product--correct or incorrect; intermediate
Dr final; complete, incomplete, or uncompletible. By comparison,_
Itreasons by analogy" and "varies the processes" (see Lucas) required

more inference by the coder.

Further contrasts among the Kantowski, Lucas, and Kilpatrick cod-

ing schees include:

(1) the addition of preparation processes such as (a)

separating and summarizing data and (b) drawing and
modifying diagrams;

(2) modifying "deduction" to inaude analytic and synthetic
deduction as well as (for Kantowski) deduction from
diagrams;

(3) use of equations,'algorithms, and random as well as

more systematic trial-and-error forms;

(4) more categories of recall (states theorems, operations,

and so on by Kantowski);

(5) more looking-back categories (alternate procedures, simpli-

fies proof, by Kantowski); and

(6) reasoning by analogy and varies the process (by Lucas).

In addition to these changes in the process sequence coding system,

the checklists were correspondingly modified. These checklists were

also reorganized to; (1) parallel more completely Folya's four-stage
model and (2) separate out (physically) productiva processes from more

error-oriented processes.

Blake (1976) developed a coding system (see Table 5.9) that resem-
bles, samewhat, the Flanders Interactional Analysis System in that

behavioral categories are matrixed against a rectangular time-sequenced

checking array. It differs from the other three coding schemes in that
"doze" (mathematical content knowledge), heuristic procesdds, and other

processes such as checking work and expressing concern are made more

distinct and are located together as clusters on the coding matrix.

Further, the Blake scheme assumes a hierarchical relationship among

heuristic processes with "smoothing" and analysis as least sophisti-

cated and invariation and analogy as most sophisticated.

2e4
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In terms of diage, the process sequence coding systems of Kil-
patrick, Lucas, and Kantowski are a means of producing a string of

symbols, with Appropriate punctuation and modification, to indicate
the major time-sequenced mental and concrete (written or.spoken)

actions of the problem solver.. BY comparison, the Blake system
involves placing checks in the row-eolumn blocks corresponding to the

listed behaviors (row) and the order of occurrence of the behaviors
(column).

Chapter VIII.B contains the complete description of a process-
sequence coding system together with a definition of all terms,
sample coded protocols, and applications of the system. Thus the
general and abbreviated discussion above will be made more
specific and concrete in that chapter.

Process-product scoring systems have been devised for the eval-
uation of problem-solving effectiveness. Lucas (1972) based a
five-point per'problem score on three factors. In this system, one,
point was possible for "approach," two points were possible for
"plan," andtwo points were possible for "result." To qualify for
the one point for "approach," a subject necessarily displayed an
If understanding" of the problem; no misinterpretation of'data, condi-

tion, or goal,and no structural errors due to misinterpretation,
constituted additional criteria for the "approach" point. 'The two
points for "plan" required the derivation of relationshipa or approx-
imations sufficient to focus upon the correct result, provided no-
executive errors were committed. (One point of credit was possible
for "plan" whenever all but one relationship.necessary for solution

were included.) "Result" points were judged on tht basis of execu-
tion of plan. Whenever the processes for solution were free of
executive error or whenever any errors were detected and corrected,
two points were awarded for the "result" score. One point was awarded
for "result" in such cases as correct numerical solution but poasibly
,incorrect units, close but inexact approximations, and the like (p0,.

178-180).

Webb (1975) also assigned a process-product score to the solution
attempts of his subjects. Again, the approach, plan, and result cate-
gories were the basis of his five-point scoring system. "Approach"

was defined ift a manner similar to that of Lucas. For the "plan"
points, Webb allowed two points for plans sufficiently complete to
lead to correct solutions in the absence of executive error; one point
for plans that might have worked, but were insufficiently carried out
to be sure; and no points otherwise. For the two points possible under
the "result" category, Webb assigned two points for correct answers,
one point in cases where multiple answers were possible and thessub-
ject correctly produced some but not all of the multiple answers,'and

no points otherwise. Thus, for each problem attempted by each subject
in these two studies, the solution attempt was given a score from zero
to five (pp. 157-158).



Kantowski (1974) devised.a process-product scoring system that

included one point of credit for each of: (1) devising a plan, (2)

absence of structural error and of superfluous syntheses, (3) persis-

tence, (4) "looking back" strategies, and (5) seeking alternate

solutions. Additionally, one or two points were awarded for products,
depending on whether computation was or was not necessary for solution.

The scores Kantowski assigned were decimal values of sixths or sevenths,

depending upon the necesiity or lack of necessity of computation (p.

144).

Analysis of Heuristic Processes

Figure 1.1 in Chapter I indicated heuristic processes are related '

to each stage of Polya's problem-solving model. It further indicated
that heuristic processes relate to each type of task variable. How-.

ever, heuristic processes are most vital in the "devising a plan" and

the "looking back" stages of Polya's model. Content and context
variables, and, to an extent, syntax variables, are more relevant to
"understanding the problem;" structure variables are more essential to
VIcarrying out the plan." The close relationship between prob-
lem structure and heuristic behaviorssuggests the consolidation of

these types of variables in the representation of the problem. It

suggests that heuristic behaviors serve a central role in initiation
and exploitation of behaviors that make for efficient "carrying out"

of a plan. Thus, indirectly, the heuristic processes serve as.a
guiding force for the choice and implementation of.algorithmic processes.

As Schoenfeld will describe in Chapter X, keeping track of alternatives

and monitoring success (components of his idea of master control")
require the effective use of processes during carrying out the plan.

Figure 1.1 also indicates that heuristic behaviors may lead to

related problem statements and related problem representations. These

may or may not relate back to the original problem; they may move
toward generalization of the problem, the results, or the methods of

the given problem; they may (as is the case with most heuristic pro-
cesses) lead to a blind alley, or to an interesting but essentially
unrelated problem.

Figure 5.1 indicates the consolidation of the major heuristic

processes into an organized grouping with respect to the problem

representation. It is clear from the literature that the problem
representation is an important idea, both in the actual solution of

a problem and in an analysis of solution" processes and problem spaces.
IPS essentially relates the analysis of problem spaces to representa-
tions, Whether it be at a state-space level or at,a problem-solver

"imagery" level. The figure makes.no attempt to include all processes

pOtentially usable at any stage of representation development and use;
it only suggests those more powerful.and more plausibly usable

processes in each stage. The figure also draws upon the.work of
Wickelgren as a means of describing the heuristic sources of creation
of equivalent, similar, simpler, and more complex related problems.
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Figure 5.1 .14oblem Representation and Heuristic Processes

ORIGINAL-PROBLEM .-§TATEMENT
Understanding the Problem

1. Decomposition
a. Giveni, Goals, Condition

, b. Special (Limiting) Cases
2. Definition
3.- Templation (Esp. Content

Knawled e)

*.

REPRESENTATION OF THE PROBLEM

Selecting

1. Analogy (Similar Represen-
tations)

2. Decomposition and Recombination
(Esp. Suboroblem Decomposition)

3. Goal Orientation/Planning
4. Induction/Generalization

(Into Patterns)
5. a. Specialization/Special Cases

b. Trial and Error (Generating
Cases)

6. Inferring

EXploiting

1. Analogy (Similar Processes)
2. Contradiction
3. Decomposition & Recombination
4. Definition
5. Induction (Esp. Successive

Approximation)
6. Means-Ends Processes

a. Auxiliary Constructions
b. Auxiliary Problems
C. Subgoals

7. Symmetry
8. State Evaluation Techniques
9. Working Backwards

1:

Alternate Representations

1. Analogy
2. Decomposition & Recombination
I. Generalization (To Other

Problems)

4. Variation of Problems
5, Auxiliary Problems/Ele ents

2Z

4

age

Equivalent 4 Similar Pl,oblems

1. Analogy
2. Definition
3. Equivalent Condition

Simpler & More Complex Problems
1. Auxiliary' Elements/Problems
2. Generalization
3. Specialization
4. Problem Variation (Changing

Condition
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It, like Figure 1.1, suggests the use of related problems for devising

a plan, as well as the exploration (see Schoenfeld's Figure 10.44) of a

variety of plausibly related problems, some of which may lead astray.

The processes in Figure 5.1 are discussed in the literature that

'was reviewed. The figure includes "templation" as described by Blake

as a vital process of understandingthe problem. His conclusion that
this process is a much-used one by novice problem solvers places it

squarely in the forefront as a heuristic process that initiates much

of the exploration and selection of representations and processes.
Except for the location in his model, Polya stiggested a category of

related processes called "templation." These appear as such heuris-

tic advice as "try some related problem...recall a theorem...go back

to definition..." Likewise, "inferring" as described by Wickelgren is

a heuristic process recognized in the literature and accentuated in

process research. For example, the form of deduction in the coding
systems of Kantowski and of Lucas speak to the importance of this

process. In fact, as Wickelgren suggests, this process (a heuristic
approach because it requires a choice of the most likely useful infer-

ence from those possible) is the first one to use in an approach to
representing a problem; Kantowski and Lucas also imply its importance
by developing the category of deductions and by doing an analysis of

the category.

Finally, the ideas from IPS about techniques for evaluating the
progress one is making toward a solution (e.g., state evaluation tech-
niques) play a prominent,part in the exploitation of a problem repre-

sentation. This evaluation process is analogous to the one made
operational for problem solvers by Schoenfeld. It.includes local as

will as specific and general verification techniques. For exploita-
tion of trial-and-error tethniques, the successive approximation form
of trial-and-error has a built-in verification process; it is based on
eiraluation of progress b? checking at each stage of the guess as well
as using the evaluated guess as a means of making more effective subse-

quent guesses. One notes that various forms of trial-and-error are apt
to enter into the development and use of representations at different

stages. In the development or selection of a representation, more
rudimentary forms tend to dominate; they serve to explore the dimen-
sions of the problem space. Followingthe existence of a representation,
more goal-oriented and means-oriented forms of trial-and-error (succes-
sive approximation) are apt to occur.

In sum, the use of heuristic processes to develop and exploit a
representation and to serve to create alternate representations is
suggested by the literature. Figure 5.1 relates the two ideas. Its

reiationship to Figure 1.1, Figure 10.44, and Figure 83.1 should be

studied.
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2. Problem Representation and Heuristic Processes

Processes far Understanding the alai=

Polya's stages of problem solving begin with the pandersOnding
the Problem" stage, as is the case with most problem-solving models.

However, Polya took a very limited view of the processes useful in

this stage. One might imply a somewhat larger class of heuristic
processes as useful in understanding the problem. However, we-assume

that the more profound mental operations useful in problem solving

occur after a surface level of uaderstanding has been achieved. Since

heuristic behaviors that extract meaning from the syntax.features, con-
tent features, and context features of the problem statement are
principally used to understand the problem, their initial positian
in the problem-solving process makes them necessary but, not suffi-

cient for successful problem solving.

Polya considers the processes of recognizing and of separating the

unknown, the data, and the condition; separating the parts of the
condition;.determining the "fit" among the data, condition, and
unknown; and drawing figures as well as introducing suitable notation-,

as those essential to understanding. Thus, he places "decomposition"
of the syntax, content, and context features in the "understanding"

category. Granted, it is virtually impossible to define the transi-
tion point between "understanding" and other stages (such as planning).

Yet it would seem that other heuristic behaviors enter into the extrac-

tion of meaning and precede attempts to develop a plan. For example,

recalling basic concepts and calling forth associations and semantic
content are typically associated with syntax as well as content and

context features of the problem and are a part of understanding the

problem.

The use of definition also contributes to understanding. The

complete sense in which Polya uses definition its a.heuristic process
does, indeed, go beyond understanding, but understanding of the prob-
lem depends upon knowledge of mathematical ideas. Colpider the

following problems:

5.7 Find the smallest number that gives a remainder of

1 when divided by 3,
2 when divided by 4,
3 when divided by 5, and
4 when divided by 6. (Adapted from Krutetskii, 1976, p. 149.)

5.8a Given four points in space, find the center of the
circumscribing sphere.

5.8b Given three points in a plane, find the center of
the circumscribing circle.
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5.8o Given too points in a line, findthe center, of
the circumscribing "arc."

Suchwords as "smillest number," "remainder," and "dividend" in
Problem 5.7, as well as "center" and "circumscribing" in Problems
5.8a 5.87.', and5.8care terms taken from mathematical content ihat

wok; recall from long-term memory necessary for understanding.
The heuristic aspect of definition in understanding a problem is
that of flexibility in exploration of the connotation/of the words.
To derive the maximum information from the statement and to avoid a

fixed notion of the problem's principal parts necessitate heuristic
interpretation of the concepts in which the problem is embidded.

Now let us consider additional problems- in terms of their syntax
and content.

5.9 What is the limiting sum of the infinite series

- 1- + 2
-

2

?2 4 8 16 32 64

5.10 What is the limiting sum of the infinite series

1 2 a 3 a
10 1-07 /03

5.22 The roots of the eqwation x3 + 4x? - 7x - 10 m 0

are -5, -2, .cpui 2. What are the roots of the

equation

(x-3)3+ 4(x-3) 7(x-3) - 10 :r 0? (Webb, 1975)

5.12 Find x, y, u, and v satisfying the four equations

x + 7y + 3v + 5u 16
Sr + 4y + 6v + 2u .2-16
2x + 6y + 4v + 8u .2 26
5x + 3y + 7v + u .2-16

(This may look long and boring.; Look for a shortcut.)

(Polya and Kilpatrick, 1974, p. 12)

The repeated phrases and patterns in Problem 5.7 as well as Problems
5.9 through 5.12 represent syntax features and content features of

significance for processes related to understanding. Definitions and

meaningsof symbols make the repeated phrases and symbol patterns take

on meaning. It is insufficient to separate and categorize principal
parts of the problem, .in the most strict sense of separating and cate-

gorizing. Polya undoubtedly associated felated meaningsof mathematical
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content and syntax features with the principal parts of a problem.

Yet, these task characteristics are so vital to problem solving that

they need to be separated out and accentuated.

Finally, consider the problems that follow in terms.of theig%

semantic content.

5.13 Twenty V.S. coins consisting of nickels, dimes, and
quarters have a value of $2.00. How marny coins of

each type are there?

5.14 One solution is 15 percent insecticide and another
is 40 percent insecticide. What amount of each
solution is needed to fbrm 25 pints of" a 25 percent
solution?

The idea of semantic content is that there is =Ire given in the prob-
lem statement than meets the eye. Understanding the problem implies
that the problem solver recognizes the existence of this additional
information and its implicitness in the problem statement. The fact

that there is more implicit information than is necessary, causing
the problem solver to deliberate and make choices that are plavsible
rather than "sure," is what makes this idea of semantic content

heuristic-related. By and large, the major heuristic process involved
is that of definition. For example, exploiting the meaning of the
word "value" helps produce understanding for Problem 5.131 similarly,
exploiting the meaning of the word "solution' contributes to under-
standing for Problem 5.24.

Proceeses for Selecting a Representation

As with devising a plan," the processes for selecting a repre-
sentation are among the most profound ones in the solution process.
For example, the-description and discussion given by Duncker about
subproblem decomposition indicate his view that these processes are
the major mental operations typically useful in problem sokiing. The
goal-oriented heuristic processes of Kantowski, like the operative
propositions of Talyzina, also exemplify techniques problem solvers
use to organise the essential features of a problem to the exclusion

of the inessential features.

A representation may be either internal or external. The develop-

ment of an internal representation for a problem corresponds to a
If second level of meaning" with respect.to the problem-solving process.
The internal representaeion, which is in a sense a visual, abstract,
symbolic,or in soma other form a "mental picture" of the problem,
arises in part from content and context characteristics of the problem'
but brings together structure characteristics as well. It includes

aim of the following: the .problem in its initial form, the desired
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s Nr.4.01

46. .SZVel**r.

te,

end repults, all initial transformed representations (deductions from

the givens) and intermediate states, as well as ideas that describe

and capsulize the stimulus to the problem solver.

For an example of an internal representAtion, consider the prob-

lem given by Paige and Simon (1966, pp. 100-109):

5.15 A car radiator contains exactly tone liter of a
90 percent alcohol-water mi.;ture. What quantity
of water will change the liter to an 80 percent
alcohol mixture?

An interesting account of a representation of this problem is described

by Paige and Simon. They report that au experimenter drew the repre-
sentation in Figure 5.2 privately after interviewing a Subject solving

the problem. The subject was asked to describe the "imagery"-he used
in solving the problem." When-the interviewer disclosed his picture,

the subject was amazed at the near-perfect correspondence between the

.
representation and his "imagery."

A representation explicitly produced is an exterpalized, formal-

ized form of an internal representation. It contains the same
features, although their form may be inexact due to the necessity
of symbolization.

Now we turn to the question: What mental.operations (heuristic
processes) have been found or are likely to be found useful in select-
ing a representation for a task? We start with the observation by
Wickelgren:

. . we see that the role of generalization (of abstract-
ing the essential properties from a problem) and the role

of representation of information . . . are very closely

linked and perhaps identical (p. 183).

Thus Wickelgren's statement places generalizationclearly in the category

of selecting a representation. Together with generalization, the special-
ization and inductive processes, including trial-and-error and successive

approximation trial-and-error in particular, are essential to the

development of a problem representation.

In the following problems trial-and-error may assist in creating a
representation:

5.16 A gum hail costs one penny. The gum balls come in

5 di.ffSrent colors. Haw many pennies do you need to
make sure you get 3 gum balls of the sane color?

(Gibb, et al., 1975, p. 37)

Ns.



Figure 5.2 A BypothOtima Rápreaentaticn ibis the Arturo Filobtam
(Probiem 5.15).

In this representation W
1,

A
l'

and T
1
represent the initial water,

initial alcohol, and initial total mixture, respectively; W2, A2,

and T
2
are the final water, final alcohol, and final total mixture;

and Ali is the,change inuthe amount of witer.
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5.27 A gang of 13 thieves stole a sack of Silver dci Zarà.. .

, when they triad to divide the booty evenly, there
were 3 dollars left over. In a fight over the extra
dollars 2 thieves were kilted. The money was dia-

.

tr eibutd again, but this time there were 5 d011are

left over. Another argument ensued and 2 more thief
was kiZted. Thevoney could now be divided evenly
among the remaining thieves. What is.the least.
.possible amount of money that b.:704 have been stolen?

Analogy,is a useful heuristic process for selecting'a represen-
tation. Although it is more generally uaeful in exploiting a repre
sentation (the more complete discussion and ememplicatioh will
be given belay, the similarity betWeen.two prpblpis is
generally based in problem structure and as such would reflect itself
in a representation of the problem. Thus, it is frequently beneficial
to attempt to develop a problem representation similar to a known or
given one if the problem under consideration has apparent structural
similarity to the problem with the known or given representation.

One could attempt the development of an analogous represeotation
whenever (1) a geometric task is a higher-dimensional analog cf another
task of known representation, (2) the condition of- one task is a part
of the condition of another or similar to the condition of another, or
(3) the goal of one task is the same as the goal of another.

To illustrate the use of analogy in the development of represen-
tations of problems, consider first Problems.5.8a, 5.81.', and 5.8e.
-The similarity across.dimensions of (a) four points in space and a
circumscribing sphere, (b) three points in a plane and a circumscrib-
ing circle, and (c) rwo points in a line and a circumscribing "arc"
suggests that whatever representation--be it geometric, analytic, or
otherwise--is used for one would likely be useful for the other.

As a second example, consider the tasks given in Problems 5.7 and
5.19. The similarity of the condition cf Problem 5.7 to that of 5.19
indicates that the representation of one would serve as a guide in
forming the representation of the other. Since various representations
of Problem 5.19 are given later, the analogous representations may then
be observed.

Duncker (1945) and Kantowski (1974) (among others) have observed
that decomposition and recombination, particularly in the form of sub-
problem decomposition, appear to be fundamentally related to "visual-
izine a path to the goal. The occurrence of goal-oriented heuristic
processes immediately before regular pat*.erns of analysis and synthesis,
and the successive phases, with each phase viewed as a problem in pros-
pect and a solution in retrospect, are ways these researchers described
their subjects' solution processes. These were the internal represen-
tations of the problems for the subjects. The processes for selecting
the subgoals for Duncker's Subjects and the goal-oriented heuristic
processes for Kantawski's subjects were, t..arefore, heuristic processes



Figure 5.3 Dtagivin for Pro Zem 5.18

Figure 5.4 Rearrangement of Figure 5.31 Preserving the Area

A
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for selecting representations. In the'case'of Dunckert "meaningful"
variation of tha problem Was recognized as leading tp a representation.
For Kantowski, =pillory elements and auxiliary problems, as wall as
vorlationethoprobiam, tended to leSd to the selectionofa representation.

There are several ways one may accomplish Variation of a problem.

Since those that are most usually successful are analogy, decomposition

and recombination, generalization, and specialization, they constitute

secondary means of creating a representation for a problem. W4 keep in

mind, however, that these processes are 'limply means tm the end of

variation of the problem, auxiliary elements, and auxiliary problems

insofar as they contribute to selection of a represenkation.

Processes fbr EXploiting a Representation

The second major part of creating a plan draws from content and partic-

ularly structure characteristics of a problem. The representation of a

problem Corresponds to the structuring of the information available to

the solver and includes, as Bruner (1973) has described it:

. . . visualization or some other shorthand way of summariz-
ing the connections made in a set of givens. . .reduces the

range of things to which he (the problem solver) attends.
This narrowing of focus involves a bit of risk taking. . .a
kind of implicit rule for ignoring certain information
[involving] the nature of the solution or the kind of goal
one is looking for. (p. 85)

The reduction of range to which Bruner refers generally is guided by

the structure characteristics of a problem; From the point of selec-

tion of an appropriate representation, the plan constitutes anoutline
of the movement from givens to the goal through the structure of the

representation. Wilson (1967), as well as Newell, Shine, and Simon
(1959), suggest means-ends analysis as a means of accomplishment of

subgoals, while Kantowski notes regular patterns of analysis and

synthesis (a decomposition and recombination process) for effective

movement within the representation.

Let us now consider the following problem:

5.28 Located inside an equilateral triangle ABC is a_
point P in such a way that PA=6, PB=8 azd PC1O.
What is the area of triangle ABC?

Consider as the representation the geometric figure described by the

problem (see Figures 5.3 and 5.4). By decomposing and recombining
the cobstitfient triangles of triangle ABC, the exploitation begins

to occur. rurther decomposition and recombination following that
shown in Figure 5.4 leads to an elegant problem polution, thus show-

ing how, by decomposition and recombination, the pictorial represen-

tation leads to an exploitation of-the information of the task.
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42:40574.

Iscall now the problem of the limiting sae (Problem 5.0):

1.,.1 1 1A.11
16 32 11-4 128

By decomposing and recombining the given representation
tion-and-hanua-the-repreaantatiorr
ing:

the informs-
1 ?*

1
-I-

1 1 1 j. 1 1 )
64 16 128 "41 4 32 256

Definition may be viewed as a haUtistic process oflussfulness under
a variety of circumstances. It potentially transform, a problem into an.
equivalent problem, but gives no assurance that the resulting problem is
more tractable than the original, problem. It is a technique worth
attempting whenever one operation or relation is defined in terms of
another operation or relation. As a transformation cin "terms," it
represents an exploitation of a metalinguistic representation.

Problems that illustrate the use of definition are given below.
Schoenfeld further.illustrates the use of this heuristic process In
cases in which a concept is defined in terms of the negation of atiother.

5.19 What is the smallest number that loaves a remainder
of 9 when divided by 10, 8 when divided by 9, 7-when
divided by 8, ..., 2 when divide4 by 3, gnd 1 when
divided by 2?'

5.20 Tom drove from his homein Washingto to a Location
in Philadelphia at 40 miles per hour. is return
trip from the Location to hie home in ton was
at a rate of 50 miles per'hour. Mat Lyza his.rate
for the total trip?

By representing the parallel phrases in terms of multiples of the
respective integers and by replacing tfie nine phrases by a single
phrase involving "common multiple," an insightful solution becomes
apparent. Note how completely the statement of Problem 5.19 cues

the use of this heuristic prOcess. Definition uot only transfo-rms
a problem into an equivalent problem; it also serves tO characterize
the invariants in a sitUation. In Problem 5.20, the definition

pf "rata" is exploited as a source of avoiding an "obvious" pitfall.

Given a representation for a problem, it is frequently profit-
able to attempt the heuristic process involving the use of symmetry.
This heuristic process is particularly fruitful:for certain geometry
problems, but it has potential in non-geometric (algebraic, numbex
theoretic, and probabilistic) tasks as well. A clue that exploiting
symmetry is apt to be of value for a given problem is the existence
of some form of symmetry in the problem givens or condition. Tor
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,example, if a part of the givens or condition ln a geometric task is

tharthe figure is a symmetrid one (e.g., equilateral triangIe,,square,
circle, rectangle), the use of symmetry-preserving transformations such as
rotation or reflection are worth considering,(GoldinandMcClintock,inpress).

Many tasks contain "hidden symmetries" that, when recognised, lead

to eIettnt-Or-Iagightful7molutions. Severel-tesks with-strub-tures-con----

taining symmetry have already been discussed. For example, in Chapter
IV the state-space representations for the Tow*r of Hanoi and the
various isomorphic forms of tick-tick-toe demonstrate symmetry in solu-

titans. These symmetries actually reflect symmetries in the givens Of
the'problems'themselves. It is frequently tho case, as in these two
examples, that solution processes (and end-reiults) involve symmetry
in some way when givens or condition have symmetry properties.'

Further examples of this reflection of symmetry of givens or condi-
tion in the solution occur in Problems 5.12, 5.19, and 5.33. The
symmetric pattern of coefficients in Problem 5.12 can be exploited to
produce a problem solution short-cut.. The symmetric.pronerties of the
geometric figures in both Problems 5.28 and 5.33 illustrate underlying
structure features that can be preserved by symmetry-preserving trans-
formations; further, these transformations lead to efficient and
insightful solutions.

Empirical evidence does not suggest the use of symmetry in proto-
cols of novice problem solvers. Neither of the researchers discussed
in the review found evidence of even limited use of aymmetry. This
absence of evidence Occurred in spite of the.explicit selection ,af
tasks that were conducive to the use of this process and in spite of

instruction designed to suggest the usefulness of thds process. It

is-important to note that both Lucas (1972) and Webb.(1975) considered
symmetry as a form of evaluation for correctness of solution (the

invariance of symmetry following transformations used in the solu-
tion), whereas Blake defined it more in accordance with Polya.

Working backwardisanother heuristic process that serves to exploit
a representation. Me process identified by Pappus as analysis, wprking
backward is a much-overlooked but powerful problem-solving technique.
Wickelgren (1974) has characterized the conditions under which thig
process is likely to be useful. He suggests that (1) a uniquely speci-
fied goal and (2) unary (a single input statement yields a single output
statement) and one-to-one (the input is uniquely determined by the out-
put) operations constitute these conditions. One can see that large
classes of problems, such as many geometric proofs as well as trigono-
metric and algebreic relations, satisfy these conditions and are, there-
fore, plausibly solvable through working backward.

Empirical research has demonstrated some use of the working-backward
technique among non-mathematician subjects; the use of this technique
has been reimatedly confirmed by mathematicians. In contrast to the
frequent occurrence of working backward in the process sequence of Webb's
(1975) subjects (approximately 100 instances), Blake (1975) found the
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process tiled by only four subjects on only one problem. Lucas (1972),

on the other hand, found it occurring rather frequently (6 or more
times) in the protocols of 17 subjects out of 30; Lucas' conclusion
was that reasoning by analysis develops as a technique subjects use
following heuristic-oriented instruction.

The use of analogy in mathematical problem solving is a means of

exploiting the information in a representation by virtue of its simi-
larity to another problem (together with the information of the second

problem and its similar representation). Analogy has been described ,

an a quasi-isomorphism between problems and as structure similarity.

This contrasts with equivalent problems, which would be classified aa
complete4 analogous or isomorphic. Examples of analogous problems -
that have been described earlier are the four-ring Tower Li Hanoi
problem in comparison to the three-ring Tower of Hanoi problem,
or the different versions of the missionary-cannibal problems. In

addition, Problems 5.81.22 5.8b and 5.86 are examples of mutually anal-
ogous problems. As is evident from examining these examples of
analogous problems, the relationship between analogy and generalization
is, at times, a close one. In fact, the related sets of problems given
here are either special cases of a more general problem, or one task is

a generalization of another.

Researchers who have deliberately attempted to observe the use of

analogy have generally not found it present in problem-solving proto-
cols. For example, the exploratory studies of Blake and Webb did not
find analogy used by subjects sufficiently oftento justify analysis.
Similarly, Lucas found analogy occurring; even after heuristic-oriented
instruction, in no more than a sing/e isolated instance of less than 10

percent of his subjects. Thus, the extent to which analogy is induci-

ble in the processes of novice problem solvers seems very small, but is
basically non-tested.

Processes far Utilizing Alternate Representations

Alternate representations will be considered here as representa-
tions that adjust for difficulties inherent in the initial represen-
tation or that lead to a secondt.possibly more elegant or more general
solution. In a sense, alternate representations lead to a more com-
plete view of a problem space, possibly to the creation of a larger.
portion of a state-space representation. They relate closely to
processes of evaluation and include "looking back" processes, particu-
larly those that involve attempts to solve the problem another way.
Likewise, processes that simplify the solution, that is, processes
that produce a clear, more compact "imagery" of the problem and its,
solution, are relevant for alternate representatiins.

.
Consider Problem 5.28 as it may be represented in an analytic form

(superimpoie a well-chosen coordinatization). This alternate represen-
tation allows a problem solver not only to solye the problem as stated,
but.also provides a means of solving a more general problem'. The

2,39
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solution to. the problem through analytic geometry produces a quadratic

surd pair, one member of which L. the solution to the original problem
and the other a solution to the analogous problem with "P' outside
rather than inside the equilaterel triangle.

The Tower of Hanoi problem(s) as discussed in Chapter TV are
generslre-tb-h rings. A questiou-frequenti*-aeked-(an-sseoctstad-
tasi) is that of The minimum number of moves in the n-ring version.
Inductive processes, involving the solutions of the 2-ring, the 3-ring,
and so on versions of the Tower of Hanoi puzzle, and tha inherent
structure of mathematical induction that it represents, will lead

one to an algebraic expression that "solves" the generarproblem.

tn contrast, but in the same inductive vein, consider again
Problem 5.17. Initial atteipts (ind successes) in solving this prob-
lem may involve the search of a number sequence such as "three more
thanthe multiples of 13" for a number that,leaves a remainder of 5
when dividedby 11 and that is divisible by 10. However, 13n + 3 and
llm + 5--representing 3 more than a multiple of 13 and 5 =ore than a
multiple of 11, respectively--(or their number sequence analog) may
be synthesized into 143k + 16 (or its number sequence analog). In

essence, this.prleSs is a restatement of a part of the condition
(using other essential notions) and is an alternate representation for'
the problem.

Now let us consider the problem:

5.21 A club with x members is organized.into four
comittees in accokdance with these two.rules:

a. Each member belongs to two and only too
committees.

b. Each pair of committees has one and only one
member in common.

How many members has this club?

Suppose that this problem has already been solved by a combinatorial
means. In an attempt to produce a more concrete imagery of the prob-
lem, a problem solver conceivably would note the similarity among the
parts of the condition and postulates of geometry.' Specifically,
note the analogy between: (a) each member belongs to two and only
two committees and "each point belongs to two and only two intersect-
ing lines," and (0) each7pair of committees has one and only one
member in common and "each pair of intersecting lines has one and
only one point in common." This analogy suggests a geometric repre-
sentation, as given in Figure 5.5, in which the lines represent
committees and the points of intersection represent club members.

For one who does not observe the inalOgy to geometric elements,
other forms of representation may be suggested. For example, a diagram
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Figure 5.5 Geome 'et Representation fbr Problem 5.21

Figure 5.6 Mdtrix RepresentatLan fbr Problem 5.21

A B C D
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or chart will allow a problem solver to display the parts of the

condition in a visual, concrete form. Suppose the four committees

are represented as in the matrix in Figure 5.6 (the committees are
labeled A, Br,.C, and D). Since the condition hints at the member in

common to a pair of committees, the matrixing of committees across

committees is suggested. One then notes that the representation pro-
vides an immediate, concrete means of satisfying the problem condi-
tion and reduces the solution to a counting process.

The utilization of alternate representations parallels the
production and exploitation of initial representations. The combined

processes of these categories apply to utilizing alternate represen-
tations as well. The major difference is the purpose alternate
representations serve. A generalized solution, a clearer and more
completely justified solution, and a more elegant solution are results

that are more easily recalled from memory and that are more transfer-

rable.

3. Associatin Heuristic FrocesseswithTesks

The idea of associating heuristic processes with tasks is a much-

tised one. Separating heuristic variables as task variables fram
subject variables is a difficult one for complete analysis. If.one

views heuristic processes aslchoices a problem solver makes or as
"rules of thumb" that gnide choices, then one class of heuristic
processes derive meaning from the number and.nature of the decision

points.

In general, problem solvers may make deliberate or "forced"

choices at the point of representation of a problem. The knowledge
of mathematical content (definitions, theorems, eti.) and the skill
in performing algorithms may determine the extent and nature of the

choices a problem solver has as he or she develops the representation
of the task. For example, the problem given by Blake (1975) will
demonstrate the possible represeqtations and the possibility of
deliberation as opposed to the predetermination of choice.

5.22 A yacht is moored at A, 50 meters
away porn a straight sea wall, CD.
The captain of the yacht wishes to
row to the sea wail to collect a
passenger and then row toaspeed-
boat moored at B, 80 meters from
the wall. Where ahould the
passenger meet the captain to make
the route as short as possible?

80 me6re
A

it

50 meters

meters----0

A knowledge of the Pythagorean Theorem would allow a problem solver

to derive a function that, when minimized, would solve the problem:

24 2
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f(x) = ./(130-x)2 +.(50)2 + + (80)2

Add to this content knowledge the skill of taking derivatives of
radical functions and the skill of solving radical equationsland
hawolutiaa_itratert.

In contrast, using a knowledge of theorems of proportionality
and the heuristic processes of auxiliary constructions and symmetry
yields a proportion-- 5° m 4--that also leads to the minimum

required in the problem. As a third option, for one who has the .

content knowledge (of physics) that "the angle.of incidence is equal

to the angle of reflection" and ita connection to minimum paths (along
with analogy), one can deduce an equation which also leads to the
location the passenger should assume and to the minimum path.

The three choices of algebraic representation of this task e

but a few of the possibilities. The point to be made is that ipfierent
in the task are a number of heuristic processes and strategie How.-

ever, the association of these processes with the task is niucf depen-

dent upon the content (and context) knowledge of the subject. Thus,

certain task variables that derive meaning from the intrinsic problem.

structure lead to certain choices for some problem solvers. Yet foci
other problem solvers the choices are more delineated. For example,

for a student of algebra who has insufficient geametry and physids
content at his or her disposal, the Pythagorean-Theorem is essentially

the only "hunch" as to an approach. For a student with a mastery of
geometry and a knowledge of physics, processes other than the solution

through calculus are afforded. Theoretically, the student of calculus
has at least the one additional strategy not available to other stu-
dents. Thus, the number and nature of the ways in which a subject can
represent the problem are variables:

There is a wide variety of ways one can associete heuristic pro-
*ceases with tasks. Two of the most commonly used associations are (1)
the association of single heuristic processes and (2) tho association
of multiple heuristic processes. The illustration given above is one
category of multiple heuristic processes association. What follows
will illustrate these two ways of associating heuristic processes with

tasks.

Single Heuristic Processes

It is clear that more than one heuristic process would be useful

for almost all mathematical problem tasks imaginable. Yet, the easy,

the most elegant, or the most common solution of a problem frequently

features a particular heuristic process. The writings of Polya and
particularly Wickelgren, amonikochers, generally indicate solution
processes of their examples irirs single heuristic process were the
one appropriate to the solution. In general, however, dissociating
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zo.

multiple heuristic processes with a task is more natural. Either

multiple solutiod paths require'nultiple processei, or multiple pro-

cesses lead to-a more efficient single solution. However, it is

useful to focus on single heuristic processes for instructional and
coiting purposes.

in developing-the-Concept dr-A parriCulsr-heuristic-proce ,

7

is customary to select a problem to "illustrate" that.process. In

essence, whenever that; is done, the author is implying that the
heuristic process,is the essential process for solving tha problem.
For example, Wickelgren (1974) suggests that "mrking backward" is
the appropriate heuristic process for que tasks.

5.23 Fifteen pennies are placed on a table in pont of
two players. Each player is allowed to remove at
Least one penny but no more thmn five pennies at
his turn. The players alternate turns, unti one
player takes the Last penny on the table, and
all 15 pennies. Is there a method 'of play that
will guarantee victory? (p. 142)

This association of "working backward" withiltim" is accomplished in
several ways.' For the researcher a theoretical analysis of "Nim" in
the sense developed in Chapter rv, or au empirical analysis based on
success in solving the "'Nim" problemaare two fruitful ways of making'

such an association.
-

Althc.h'we speak of "single heuristic processes" as if they were
unitary ideas, the actual use of one such process is quite varied.

Even when a single process is very specific, such as "try factoring"

as opposed to very general, suchas "try to use special cases" or try

to break the problem into subproblems," the way in which it is,applied

can be quite varied. In essence, a heuristic process is a name given
to a class of similar rules for selecting search paths through a prob-

lem space. This point should be kept in mind in teaching heuristic
processes and in evaluating the acquisition of suah processes.

We shall illustrate the variety, across a set of problems, in the
use of a rather specific heuristic process. Chapter X.B contains
several examples to make the same point for more general heuristic

processes. Consider now the following set of, five problems:

5.24 What is the fractional form of thb repeating
decimal .363636...?

5.25 A eix place number is formed by repeating a thoee place
number; for example, 256,256 and 678,678. What is the

Zargest integer 4bat divides all six place numbers of
this form?
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.5.26 iffirmd.2.3. ..1,000 (more convenient! 10001) find
the number of terminating solos when the matiplica-
tion is carried out.

5.2? Determine the numbcr represented by the words HATBOX
and BMW if it is lorwn that:

8.H4TBariP4.80.TH4T.

5.28 How old,is the captain, how many children has he, and
how tong is his boat if 32,118 is the product of the
three numbers (integers); the length of the boat as
given in feet; the captain has both sons and daughters;
he has more years in age than ohildren, but he is not
yet 100 years old.

For each of these problems, a single heuristic process (used in differ-

ent ways) may he fruitfully applied. Yet, in some cases other problem-
solving procedures (including algorithms) may occur to the problem

solver. To single out a particular process and show its applicability
(or allow for the discovery of its applicability) should serve both to

motivate and to increase the transfer potential for that process.
Herein lies a major virtue of examining single heuristic processes.

Miatiple Heuristic Processes

Problem solving involves the use of heuristic.processes in com-

bination. Research and theory to date, however, only hint at the
combinations that are effective. For example, Wilson (1967) suggested
that the combination of general and task specific heuristic processes
complement each other in the problem-solving process. gantowski (1974)

indicated that progress towarCthe goal of a problem tended,to take

the form of goal-oriented processes immediately followed by patterns
of analysis and synthesis. In addition, Krutetskii (1976) noted that
problem solutions of very capable subjects were characterized by
clearly segmented, sequential logical "chunks" toward the goal.

Multiple heuristic processes may occur as sequenced, comptementary

processes. Yet they may occur in other combinations as well. We shall
limit the discussion of other combinitions to only.two types, although

'it is clearly recognized thaw the reality of problem solving is not so

limited.

Polya (1957) has suggested a sense of "embedded" combinations of

heuristic processes. Yor example, the heuristic process known as

variation of the problem may be accomplished through such processes as'

generalisation, specialisation, analogy, or decomposition and recombin-

ation (p. 65). As another example of "embedded" combinations of
processes, Polya and Kilpatrick (1974) suggest that "indaction requires
observation," au implication that repeated use of special cases and
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patternsearchunderlies the inductionprocess. Ina similar sense, generall

zation maybecoLceptualized as "containing" inductive processes.

In associating multiple heuristic processes with a task, we will

discuss two basic classificatio,n schemes. First we suggest alternate

processes that lead to distinct solution paths. In contrast with

this, we suggest nultiple heuristic processes'representingasequenced

set of behaviors along a single solution path. "Looking bade! may

uncover the first of these, while "planning" suggests the second.

In either case, state-space analysis of a task is a means of identi-

fying the nultiple heuristic processes of a task regardless of the

classification scheme used.

It seems reasonable to assume that the likelihood for successful

solution of a problem increases with an increase in the number of

alternatives at any 4tsision point in.the solution. 41 course, this

is an oversimplification, but availability of alternate means of

successful solution, all other things being equal, is a plausible

factor in problem difficulty. Lihreise,'"getting started" on a

solution is a necessitysfor succonful solution. Thus, mult$ple

"approach" processes may plausibly relate to success in problem solving.

Let us consider Problem 5.19. There is aNariety of distinct

heuristic approaches to this problem. In addition to using the method

of die related problem (Problem 6.7), we could try "definitiva." How

does the solution to his problem relate to the definition of "least

common multiple" of 10, 9, 8, ..., 2?

. One could also consider "variation of the problem" in the form

of dropping a part of the condition and maybe its use in combination

with induction. For example, induCtion may involve searching the

sequence of answers to

5.29a What ia the smallest number that leavea a remaind

of 1 when divided by 2?

5.29b What ia the smallest number that leaves a remainder

of 2 when divided by 2 and leaves a remainder of 2

when divided by 3?

and so on, for a pattern.
a.

Finally, one could use successive approximation trial-and-error

by testing numbers that end in 9 to determine the members of that sat

that leave the proper iemainders when divided by 9, 8, 7, ..., 3, and

2, Afspectively. Successive approximation becomes relevant by noting

psalms in the set of numbers ending in 19.

Multiple heuristic processes for key approaches to solutions tg

Problem 5.22 were given. As another example of the use of multiple

heuriitic processes, consider the following set of thtee problems.
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&so In the figure'Akm4AC, angle jAD*30°, and mace. Find the

measure of angle EVC. (Adapted from The Contest Problem

Book II, 1961, p. 45.)

5.31 In the ftgure, ACICD
and angle CAB - angle
ABC = 309. Find ttle

measure of angle BAD;
(Adapted from The Con-
test Problem Book II,
1961p. 54.)

5.32 Triangle ABC has AB-AC.,

and angle A=20°. D is
a point on Aesuch that
BD*AD. E is a point on
AB such that BE=BC. Find
(and prove!) the measure
of-angle BDE.

8

One representation for Problem 5.30 is in thelorm of a set df
linear equations-in unknowns (such as 300 + 4DAC + 2z'ACB-0,180':
LDAC + 2LDEA . 180'; and x° +1.ACB.,.4DEA). An alternate heuristic
process that is productive is to observe that L.DAE is,not of fixed
size; therefore, the implication is that the solution is independent
of the size of that angle. Specialization, choosing a special.case,

such as !DAC 30% could be productively exPlored.

Now we consider Problem 6.31. For one who has solved Problem
5.30, the use of an auxiliary constructionconstruct CE CB'for a

point E on BA extended through A--would be plausible toward the means
of "using the result" of Problem 5:30. As an alternate for one who
notes the symmetry implicit in the isosceles triangle ACD, the
reflection.of,the figure about the perpendicular from C to AD is .

another plaulible approach. These two problems exemplify tasks for
which multiple heuristic processes may initiate alternate distinct

solution paths.

Is Problem 5.32 sufficiently related to Problems 5.30 and 5.31

for the use of the resulis of a related problem or the use cif.the

method of a related problem to be justified? Is an auxiliary line
suggested? Whether or not the method of "consider a related problem"
is helpful, such other approaches as "consider using (construct-
ing through extended line segments) a triangle that can be proved

24 7



congruant to triangle ADE" are fruitful. Also, approaching the problem

through the use of a trigonomitric relation is productive; this

suggests multiple heuristic processes.

There are, of course, numerous examples in which a heuristic

process may be "embedded" in another. A particularly frequently
occurring combination is that of a'tesk-specific heuristic process
being embedded in a general process, such at means-ends- analylis or

plsnning.

Heuristic processes may also'be sequentially linked in the solu-

tion. One general pattern.of such sequencing suggested,by Kantowski
(1974) was that of a goal-oriented process, followed by analysis and
synthesis, followed by a goal-oriented process, and so on.-'This
suggests heuristic procesdes for accomplishing a subgoal in sequence
with those for accomplishing, successive subgoals, and so on, similar
to Duncker's (1945) view of problem solving.

Interaction of Other Task Variable Cate-
gories with Heuristic Behavior Variables

The model of Figure 1.1 suggests that syntax variables as well
as content and context variables may initiate heuristic behaviors,

and vice-versa. We have seen several examples of thid interaction
already. Consider also the problem:

5.33 In circle 0 of radius 5, OABC
is a rectangle. Side 0A=3 units,
and the segment AD of the radius
is 2 units. What is the length
of AC?

Content knowledge will serve to suggest alternate solution paths.
For example, the length of AB may be found by using the fact that
"whenever two chords intersect in a circle, the product of the seg-
ments of one of them is equal to the product of the segments of the

other." By using chord (diameter) DF fri conjunction wia BA (extended
to form a chord), one obtains BA 4. However, this result is obviated
if one recognizes the applicability of "the diagonals of a rectangle

are equal." The use of this fact may require "insight" of the naive
problem solver. Yet, the structural features of tt.a givens and condi-
tion imply the applicability of "problem symmetry" ind the use of a
symmetry-preserving transformation (reflecti:m of the rectangle about

either of its axes of symmetry).

Problems 5.7, 5.9, and 5.19 represent examples of problems in
which iyntax features potentially Ode heuristic processes. The
"parallel" nature of the phrases tn Problem 5.7 implies a need to

2 4 8
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II rephrase the problem," which stIggasts the possible use of definition.
Tfie pattern of signs in Problem 5.9usuggssts regrouping accord4na-to
this pattern, hence, a decomposition-recombination process is suggested.

Likewise, the pattern of phrases in.Problem 5.19 should again lead the
observant problem solver to rephrase, or possibly to produce a simpler,

related problem, In any event, the syntax features of.the problem
potentialli cue the heuristic process useful In problem solution:

Problems 5.5, 5.10, and 5.18, as well as Problem 5.33, connect

content variables and heuristic processes. For example, Problem 5.20

is recognizable as a place-value-related problem and as such suggests

again the process of decomposing and recombining. Problem 5.28
recalls the Pythagorean triple, .6-6-10, and cues the problem solver
to the decompose-recombine heuristic possibilities inherent in the
problem by vittue of this content knowledge. Finally, Problem 5.5
recalls the "rate" problem type and possibly the process of construct-
ing a table'. It may also suggest "variation of the problem" or "go
back to definition" in light of the fact that two seemingly very
closely related.problems are so structurally Aistimitar. The apparent

inconsistency of results in Problems 5.5"and 5.6 will cue such behaviors.

For-'theyery observant-problem-saVer, analogy iiy be a heuristic
approach of relating Problem 5.22 to the physics content.mentioned
earlier as a third solution option.' The contextual clues of the

problem, together with the physics content knowledge, may allow a
problem solver, by making insightful use of analogy, to derive a
solution with little effort (compared with the effort of the calculus

solution process.)

4. Conclusions

Although a notable increase of interest in heuristic processes has
occurred since Polya's reintroduction of the concept, inquiry into the
ramifications of this form of reasoning is still in .its infancy. We
have seen some of the impact of heuristic reasoning in computer program-
ming and in psychology. Experimental and exploratory studies related to
mathematics have begun to probethe "natural existence" ar well as the
"instructed development" of heuristic processes, and to study their
effects on problem-solving success.

Asresearch hypotheses evolve from exploratory investigations, much
'work is needed to substantiate or reject them by means of rigorous exper-

imental studies. Some topics are still in need of hypothesia-generating

exploration. What heuristic techniques are useful for what subject
population, what processes can be developed by specified forma of
instruction, and how these affect succeas in solving non-routine prob-
lems, are all virtually intouched areas. An understanding of the
properties of problem tasks with respect to heuristic behavior is
fundamental to the success of future research.
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and
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In this chapter the relative difficulties of fqyar kinds of verbal
problems are compared with respect to student populations in different
grades. The experimental problem characteristics, defined below, are:
abstract factual CAF), abstract hypothetical (0), concrete'factual(CF),
and concrete hypothetical (CH). These variables were selected for study
because of their possible iimportance from the.standpoint of cognitive--
developmental theory. At the stage of formal Operational thought, the
adolescent can construct systems and theories, drawing,conclusions from
pure hypotheses as well as from actual observations. Two of the main
characteristics of this stage, in contrast to the concrete operational
stage which precedes it, are the ability to handle abstract situations,
and the capability of thinking in a hypothetical-deductive manner
(Johannot, 1947; Piaget, 1968). Thus, a strictly developmental model
might suggest that concrete problems and factual problems would be less
difficult than 'abstract problems and hypothetical problems for elemen-
tary school children, while for older subjects the differences would
tend to disappear.

The process of solving verbil problems in mathematics has often
been described as consisting of two general stages--translation and
computation (Jerman, 1973; Kinsella, 1970; Paige and Simon, 1966).
This point of view has been adopted for the model underlying-the pre-
-sent book (see Figures 1.1 and 2.1). In Chapter I, syntax, content,
and context variables are associated with the problem statement, and
thus are expected to affect problem difficulty principally during the
translation stage. In Chapter II, Barnett provides a more detailed
model for the'influence of syntax variables on the translation stage
of a verbal problem, and in Chapter X.B, Schoenfeld urges the teaching
of heuristic processes by means of the particular Stages with which
they are associated.

For the verbal problems in the present study, the translation
stage corresponds to the "setting up" of the verbal problem statement



as a.system of mithematical expressions or equations. During the compu-

tation stage, the problem solver performs the algebraic operations
necessary to obtain the scilution. The kind of situation (abstract or
concrete, factual or hypothetical) described by the problem statement
(i.e., its verbal oontart) may be expected to affect ths difficulty of

translating the problem into mathematical expressions, and consequently
the overall difficulty of the problem.

Interest in the field of infermation.processinghas stimulated the
creation of computer programs which can solve verbal probleMs in mathe-
matics through the above two-stage Process; for example, BobrOWie
STUDENT program (Bobrow, 1968), Paige and Simon used Bobrow's program
ae the basis for a.model of human behavior in solving verbal problems,
comparing the protocols of eubjects instructed, to 'think aloud" witil

STUDENT's direct translation of algebra word:problems (Psige and Simon,
1966). In order-tr. determine the implications of such a model for the
relative difficulties of abstract vs. concrete and factual vs. hypothe-
tical problems, we here utilize the STUDENT program iiocedure to
analyze problems of the four types AF, AH, CF, and CH. The analysis
modifies STUDENT only by broadening its vocabulary in a consistent.
manner.- It is concluded that concrete problems are more complicated
for STUDENT than abstract problems, since concrete problems must undergo
additional idiomatic subItitutions in order to reference the-number'or
quantity of objects described in the problem, rather than the objects
themselves. Likewise, hypothetical problems require procedures consider-
ably more complex than do factual problems (see below).

Thus in contrast to a strictly developmental theory,*the STUDENT-
type information processing model would suggest that AF problems.are
the easiest.and CH the most difficult.

The purpose of the present chapter Is to describe in detail the
methods used in the construction of the problem instruments used in
the study. An effort was made to,address systematically each of the
categories of task variables described in this book, so that parallel
forms of verbal problems could be constructed--forms which held constant
as many task variables which werenotof experimental interest as possible,
while varying those which were of interest. Often it was most diffi-
cult_to ensure that variables were held constant, and the reader will
be able to observe the extent of our success.or lack of success for
each variable.

Before proceeding with the detailed description and analysis of
the problem instruments, a brief overall description of the study will
be given.

1. )0escription of the Stud

The population for this study consisted of students in grades 4
through 12 in a predominantly white middle- and upper-middle class .

school district in suburban Philadelphia. The school district
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contains seven elementary schools, one junior high scilool, and one

senior high school. Two elementary schools deemed to be the most
representative in-mathematics achievement were selected; the tests

were adminiatered to all children in grades 4 through 6 in the

elemantery.schools. Junior high classes were selected randomly from
the three achievement levels in grades 7 through 9, and senior high
classes were selected at random to Obtain a repiesentative cross-
section of mathematics achievement in grades 10 through 12. A total,

of 399.elementary school children, 613 junior high students, and 274
senior high students comPleted the problem sets in.the study.

The word-problem tests used in the study consisted of five sets
of four problems each, for a total'of 20 problems., Each set of'four
problems contained one problem each of the type AF, AH, CF, and CH.
Three different tests were used: an elementary test for grades.4
through 6, an intermediate test for grades 7 through 9, and an
advanced test for grades 10 through 12. There were three problem
sets common to both the elementary and intermediate tests, four

problem sets common to both the intermediate and the advanced tests,
and two problem sets commOn to all three tests. (No problems were
uniquely used with grades 7 through 9.). In general, the computa-
tionally more comi4ex problems were retained for the higher grade
levels.

In addition three different computational skills testa were
developed: elementary, intermediate, and adVanced. The computat$onal
skills tests consisted of five sets of two problems each, testing:the
computational algorithms necessary to solve the corresponding sets of
verbal problems:

,A researcher met with,alloteachers in the eleimentary schools and
the junior high school prior to the testing. to explain procedures.
In the senior high school, tA6 department chairperson explained'the
procedures to the participating teacheri after meetiag with the
researcher. Instfuction shpets and record forma were distributed
at that time. The.tests themselves were 'administered to all of the
students 'on two consecutive .days in September 1976. Each day the
atudents were'first asked to solve.ten word problemi'in 30'minutes.
These tests.weie collected, and a computational test consisting of
five probleMs was distributed fof completion, in a ten-minute period.
On the first day, half of the students received Part I and half
received Fart 11 f the word problem tests; on the second day, these
were reveriied. Testing order was assigned randomly within each class.
The analysis included only data for students who completed the entire
test.

The basic experimental desigp was a multifactorial analysis of
variance with repeated measures in two experimental factors (aner,

1971, pp. 599-603). Factors incl4ded in the analysis were: (a)

grade level, (b) sex, (c) test order (Part I first or Part II first),
(d) performance on the computational skills test (pass or fail), (e)
first experiruental factor--abstract or concrete, and (f) second
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experimental factor --factual or hyPothetical. .Six different analyses

of Variance were performed in accordance,with the *trove design: (1)

elementary school students, all'probleMs; (2) junior high school
students, all problems; (3) senior high sChool studentsiell problems;
(4) elementary/and junior high students, problems common to:both
tests; (5) junior high and senior highstudents, problems commoFt to

both tests; and (6) all student:, probleme common to all. three-tests.

-

More detail on the study itself.may be found in the dissertation .
of one of the authors, and is to appear in the literature (Caldwell,

1977; Caldwell and Goldin, 1979). Some of the findings are summarized

at the end of this chapter, but fitst we shall examine the construction
of the problem instrulents.

The Experimental Variables

Tae classification of problems as concrete or abstract, and as
factual or hypothetical, was based on the following definitions (see
also Chapter III). An abstract word problem involves 4 situation
which describes abstract or symbolic objects, while a conarete word

problem describes a real situation dealing with real objects. For

example, a problem about digits in a number would be abstract, while
a problem about baseballe,,would be concrete.. A.factmal probliem des-

cribes a situation. A hypothetical problem not only describes a
situation, but also describes a possible change in the situation.
This change does not really occur within the.context of the_problem.---
In solving the hypothetical.problem, the problem7solveriffiiiit consider

not only the situation which occurs within tte context of the problem,
but also the described alteration which does Aot occur.

It was desired that the classification of problems as abstract or
concrete, factual or hypothetical; be both a valid and reliable process.
Consequently each mblem was first classified by consensus of the,
participants in the mathematics education doctoral seminar at the
University of Penniylvania. Where there was not unanimous agreement
of the five participants, a problem was reworded until agreement was

achieved. In a final validation procedure, a validation instrment
was given to five faculty members and graduate students in education,
none of whom had participated in the doctoral seminar. After some
expekimentation, it was determined most reliable to use separate
questionnaires for the abstract/concrete and the factual/hypothetical
classifications.

Thus on the "Abstract/Concrete Validation Instrument," there were
these instructions: "Please decide whether each of the following
problems is abstract or concrete according to the following defini-
tions and circle the appropriate adjective beloup" Tbe above
definitions of abstract and concrete problems were then stated,
followed by 44 problems to be classified as one or the other. The
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"Factual/Hypothetical Validation Instrument" contained similar instruc-
tions followd by the definitional but on this instrument it'sras dammed

adv0able to include four examples.' These were as follows:

6.2 There is a certain given number. Three more than twice
this given numbar is equal to Afteen. What is the
value of the given number?.

(Factual. No change is described.)

.-

..*6.2. There is a certain number. 11 this number ware four
more than twice as Large, it would be equal to eighteek.

What is the number?

(Hypothetical. The number is not really four more than
twice as large.)

6,3 .SUsan has some.dolls. Jane has five more than twice
as many,'so she has seventeen dons. 86w many dolls,.

. does Susan have?

(FactUal. No change is described.)

6.4 Sicsan has some dolls. If she had four more than twice
as many, she wou74 have fourteen dolls. Brow many dolls

does Susan really have?
,

(lypothetical. Susan does not really have four more
than twice as many dolls.)

,

It Will be noted.that of .the example prOblems gfir.eithe first two
are abstract and the'lisi two are concr40;i:41tbbUgh'ihis was not
explicitly pointed.out ontbe l'actuallHOothetical.ysliGratIOn..
Instrument." ,

Di order-pa inelude a problemin the 'exiFeriMent,'it was'reimired

that four of the five valldators indepenrlengy classify the problem
as abstract or concrete, factual or hypoibetical, in agreement tarith

the consensus of the doctoral seminar. This stringent regutrement
was imposed in order that there be little doubt in the interpretation
of the definitions of the experimental variables. The underlying
consideration was to obtain a degree of precision which would ensure
the reproducibility of the results.of the study; or alternatively,
which would permit further studies of the s4me abstract/concrete and
factual/hypothetical variables. The experimental problems are listed
by sets in Table 6.1.

Of the 44 problems listed on the "Abstract/Concrete Validation
Instrument," there was unanimous agreement of the five validators on
37 problems. One validator classified the four problems involving
age as abstract (including Problems 5(a), 5(b) and 6(a) in Table 6.1);
one classified a problem about camels' loads as abstract (Problem
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Table 6.1 The lkwimentai Problem Anaemia by Sea

Set 1 (2).Jane has 32 gumdrops. Her older sister Sarah has three
times as many gumdrops as Jane has. How many gusdrops
does Sarah have?

(b) George has 34 marbles, Suppose that he had two times as- *CR
many marbles as he really has; How many marbles would
George have then?

to) The number 33 is given. A second number is three times AF
as large as the first number is. What is the value of
.this second number?

(d) The number 34 is given, Suppose that this number were AR

two times as large as it really is. What would the value
of the number be then?

Set 2 (a) Julie has seven more books than Bob, Bob loses four
books, so that now he has fifteen left, How many books
dOes'Julie have?

CT

(io) Charlie has eight more records than Amanda has, If CH
Amanda lost three records, then she would have Sixteen
left. How many records does Charlie have?

(1) A number is six larger than a second,number, The second AF
number is changed so that it is five smaller, and now
it equals sixteen. What is the first number?

(d) A number is nine larger than a second number. If the AR
second number were three smaller, then it would equal
seventeen. What is the value of the first number?

Set 3 (a) Phil has seven more than three times as many toys as he
had last year, and he has 31 toys. How many toys did
he have last year?

(b) If Sally had nine more than twice as many records as
she really has, she would have 2$ records. How many
records does she really have?

CF

CR

(c) The value of eight more than six times a given number is AF
known to be equal to 44, What is the value of the given
number that is described here?

(d) If an unknown number were eight more than five times as AR
large as it is now, then it would be equal to 33. What
is this unknown number?

continued

245
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ilable 6.1 toontinuidU

Sat 4 60 Alan bought an equal number of plants and flowerpots.
Each plant cost three dollars and each flowerpot cost
five dollars, so that he spent 48 dollars in all. How
many plants did Alan buy?

(b) Jane has an equal number of dogs and cats. If she had CH
twice as many dogs and four times as many cats, she
would have 42 pets in all. How many dogs does Jane
have?

(c) A number is equal to a number 0. The sum of AF
three times the first number and four times the-second
number is known to be equal to 56.. What is the value
of& in this question?

(d) The numbers 4 and C) are equal. If iS were twice AH
as large as it is and () were-five times as large,
then the sum of the new numbers would be 49. What is
the value of Eti ?

Note: On the validation instruments, problems 4(c) and 4(4)
appeared with an X in place of the triangle and a Y
in place of the circle. The change was made in order
to permit these problems to be used with all three groups
of subjects.

Set 5 (a) Jenny is a girl. Jenny's father is three times as old CF
, as Jenny is, and he is 39 years old. How old is Jenny?

(b) Eddie is a boy, If Eddie were four times as old as he CH
really is, then he would be 48 years old. How old is
Eddie?

(c) There is a number. A second number is five times as
large as the first number, and the second number is SS,
What is the value of the first number?

(d) There is a number. If this number were two times as
large as it really is, then it would be equal to 28.
What is the number/

258

AF

continued
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Table 6.1 (continued)

,44.

Set 6 (a) There are four people in the Smith family. Mary Smith CP
is the youngest, her sister Rose is two years older
than Mary, her sister Ann is two years older than Rose,
and her sister Louise is, two years older than Ann.' The
sum of all four ages is equal to 132. How old is Mary?

(b) Four camels are carrying equal loads. Suppose the first CH
camel were carrying the same load, the second were carrying
six pounds more than the first, the third were carrying

- six pounds more than-the second, and the fourth were
carrying six pounds more than the third. The sum of the
four loads would be 156 pounds. How many pounds is the
first camel carrying?

(c) There are four numbers in a.given list. The first number AP
is the smallest, the second number is four more than the
first number, the third number is four more than the
second number, and the fourth number is four more than
the third number. The sum of all four numbers is 184.
What is the first number in the list?

(00 There are four equal numbers in a given list. Suppbse AH
the first number were the same, the second number were
three more than the first, the third number were three
more than the second, and the fourth nutber were three
more than the third. The sum of all four numbers would be
178. What is the value of the first number?

Set 7 (2) In a certain school in Pennsylvania, one-fourth of the CP
pupils are boys, and there are 43 boys in the school.
How many pupils are there?

(b) If John were able to work only one-third as much, he CH
would receive 35 dollars a week. How much does he
receive a week?

(2) tt is known that one-fifth of a given number has a value AF
equal to 42. What is the given number that is described
here?

(1) If a certain number were only one-fourth as large as it AH
is, it would be equal to 28. What is this number?

237

continued
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Set 8 (a) A young farmer has eight more hens than dogs. Since CP
hens have two legs each, buy dogs have four legs each,
all together the animals,have 118 legs. Hew many dogs
does the young farmer own?

(b) There'are four more girls in an English class than boys.
If there were six times, as many girls and twice as many

'boys, there wduld be 136 pupils. Hew many boys aie
there?

es

(a) The value of a g1ven number is six more than the value A?'

of a second number. The suM of two times the first
number'and four times the second number is 126. What is
the value of the second number?

'(0i) A given number is six more than a second number, If the AM
first number were four times as large and the second
two times as large, their sum would be 126. What is
the second number?

The (namentary word problem test consisted of Seta 1-5 above; the
intermediate test consisted of Sete 2-4 and 8-7; and the advanced test
included Sets 3-4 and 6-a.

Int

2 6- s
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6(b) in Table 6.1); and one,classitied a se1ary problim as abstract
(Problem 7(b) in Table 6.1); Only one problem did not receive the
required agriament of four validators; that problem was tewritten
and classified by the same group of validators'with unanimous agree-
=ant. Of the 44 problems listed on the."Factuallftpothetical
Validation Instrument," there was unanimous agreement of the five ,

validators op alI-of them. The rewritten' problem vas iesubmitted
to the same validators, and agreement was again Unanimous. In short,

it was not overly diEficuIt to obtain independentmagreement on the
classification of verbal problems with respect to the experimental
variables. Greater unanimity might have been achieved for the
al:retract/Concrete variable had illustrative examples been provided
the validators, as they were for the factual/hypothetical variable.

Let us discuss somewhat further the interpretations of the
experimental variables with respect to cognitive-developmental theory,
and with respect to Bobrow's STUDENT program. Our most Apportant
renark is that both the abstract/concrete end factual/hypothetical
variables describe the problem's verbal context. Making reference
to the context variafiles discussed in Chapter III (Table 3.2),

variables describing a verbal dontext are distinguished from this.
describing differences among problem embodiments (e.g., verbal prob-

'-'lems vs, maniOulative problems). Thds the "concrete" problems thit
we study are only "concrete" in the-sense that.the problem statements
discuss "real objects" or "real situations," not in,the sense of being
embodied td a manipulative task environment. This is a step;removed
from the meaning of"concrete" as tt is often'interpreted in develop-
mental theory. Nevertheless, there is a widespread assumption among
elementary educators that concrete verbal-prciblemp.(is our seine) are

more appropriate for Vounger children, and thtrefore this represents

an important variable to study.
ik

We have been considering the experimental variables to be contett
variables, because they characterize different kinds of situatione
which are deieribed when the'meanings of the problem statements are"

.interpreted. However, each of these variables has'a.syntactio com-,
ponent as well, which becomes very apparent when our problems are
examined with reference to the STUDENT prograft.

The input for STUDENT-consists of a restricted subset of English
words which can be used to express a variety of algebra and arith-..
metic word problems. The program sets up a corresponding set of
equations and solves for the requested unknowns. A store:of "global"
information, not specific to any one problem, enables the programlo
identify equivalent terms. The language-processing oyetem proieeds
by transforming statements into semantically equtvalent sequencis of
simpler sentences which can be directly interpreted. . The first step
is to make "mandatory substitutions," which reduce certainwOids pt
phrases to their standard equivalent or canonical forms. This is
accomplished by means of a simple dictionary of synonyuS which is

0 part of the global. information. The next step, "taggiwwirds by .

function," applies labels to some of.the words'in the text,' indicating

2

.?"



-245-

-Figure-6.1 Fig:what** for Szorgr (Adapted f2vm &brow, 2088)
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Table 6.2 &are la of a Probiem Saved by STOW (Advtiod from Bobrow nee)

The problem to be solved is:

If the number of, customers Tom gets is twice the square of 20 percent
of the number of advertisements he:runs, and the number of advertisements
he runs is 45, what is the number of customers Tom gets?

With mandatory substitutions the problem is:

If tne number of customer's Tom gets is 2 times' the square 20 percent
of the number of advertisements he runs, and the number of advertisements
he runs is 45, what is the number,of customers Tom gets?

With words tagged by function the problem is:

If the number (of/op) customers Tam (gets/verb) is 2 (times/op 1) the
(square/op 2).20 (percent/op 2).(of/op) the number (of/op) advertisements
(he/pro) runs, and the number (df/op) advertisements (he/pro) runs is
45, (what/Q word) is the number (of/op) customers Tomp(gets/verb) (?/DLM)

The function tags have the following meanings:

op This tag designates a possible arithmetic operation.

op 1,2 The tags op 1 and op 2 also designate operations, the
number indicates the order of operations.

verb This tag is used to designate a verb.

ro This tag is used with pronouns.

Q word This designates question words, such as "what" or "how many,"

DLM This abbreviation is used for the tag "delimiter." These
are punctuation marks indicating the end of a sentence.

The simple sentences are:'

The number (of/op) customers Tom (gets/verb) is 2 (times/op 1) the
(square/op 1) 20 (percent/op 2) (of/op) the number (of/op) advertisements
(he/pro) runs (period/DLM)

The number (of/op) advertisements (he/pro) runs is 45 (period/DLM)

(What/Q word) is the number (of/op) customeri Tom (gets/verb) (?/DLM)

continued

261
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Table 6.2 (continued)

%

The equations to be solved are:

Equal X (number.of Customers Tom (gets/ver0)

Equal (number of advertisements (he/pro) runs) 45

Equal (number of customers Tom (gets/verb)) (times 2 (expt (times .2000
(number of advertisements (he/pro) runs)) 2))

Prefix notation is used in setting up these equations; the operation
is indicated first and then the two operands.

The operation "expt" has two operands and indicates exponentiation;
the first operand is the base and the second the exponent.

The solution is:

The number of customers Tom gets is 162.

'+r

T4



their grammatical function. Thls is also accomplisbsd by Masai of a
dictionary.classifying certain words as operators, verbs, and
delimiters. The text is then divided into a.sequence of,simple
sentences, and these are translatedAnto equations by assigning
variable names to question words snd noun phrases. ,Figure 6.1 out-
lines STUDENT's operation, and Table 6.2 gives an eiample adapted
from BobroW of a problem solved by STUDENT.

We shall use the STUDENT procedure to analyze Problems 6.1
through 6.4. The first pioblem (6.1) is abstract and factual.

There is a certain given number. Three more tha; twice
this given.number is equal to fifteen. What is the
value of the given number?

With the mandatory substitutions, the problem becoMes:

There is a certain given number, 3 plus 2 times the given
number is 15. What is the value of the given number?

The next step involves tagging the words by function:

There is a certain given number (period/DM 3 (plus/op 2)

2 (times/op 1) the given number is 15 (period/DM) (What/

Q word) is the value (of/op) the given number (?/DLM)

When the problem is divided into simple sentences, We have:

There is a certain giVen number (period/DLM)

3 (plus/op 2) 2 (times/op 1) the givennumber is. 15 (period/DM)

(What/Q word) is the value (of/op) the given number (?/DLM)

The problem is now translated into equations. The first sentence is
redundant, since it is the question sentence which identifies the
unknown.

Equal X (gtven number)

Equal (plus 3 (times 2 (given number))) 15

The program now solves the problem by solving the equations X = givev
number, and 3 + 2X 15. No significant alterations in the program
have been required for this problem, and no optional or idiomatic
substitutions were made.

problem 6.2 is .abstract and hypothetical.

.There is a certain number. If this number were four more
than twice as Zarge, it would be egwal to. eighteen. What
is the number?
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With mandatorx substitutions, the problem becomes:

There is a certain dumber. If the number were 4 plus
2 times as large, it would be 18. What is the number?

With words tagged by function:

There is a certain number (period/DLM) If the number
were 4 (plus/op 2) 2 (times/op l) as large, (it/pro)

would be 18 (period/DLM) (What/Q word) is the number

(?/DLM)

The simple sentences are:

There is a certain umber (period/DLM)

The number were 4 (plus/op2) 2 (times/op 1) as large (period/DL)!)

(It/pro) would be 18 (period/DLM)

(What/Q word) is the number (?/DLM)

As in Problem 5.1 the first sentence is redundant, and the last sen-

tence translates to the equation "Equal X (number):" However, the
middle sentences requiie additional elaboration of the processing

system. In the second sentence, the comma is. automatically replaced by
(period/DLM)-, because it has been pteceded by a subject and a predi-
cate. In the third sentence, there is ambiguity as to the antecedent
of the pronoun "it;" "(it/pro)" refers to the hypothetical number
rather than the real one which is to be found, but.it is not clear
that STUDENT could handle this distinction. The comparison "as
large" also involves some ambiguity; the insertion of the phrase "as

it is" to complete the comparison helps somewhat, after Which the

comparison "as large as ... is" must be omitted, leaving only the
"it." Then, in order to specify the antecedents of the pronouns,
the noun phrases assciciated with the subjunctive tense verbs must
be distinguished from those associated with the present-tense verbs.
The second 'and third sentences thus become:

(The number/different tense) is 4 (plus/op 2) 2 (times/
op 1) (it/pro) (period/DLM)

(It/pro, different tense) is 18 (period/DLM)

Translated into equations, the problem now becomes:

Equal X (number)

Equal Y (number, different tense) .

Equal (number, different tense) (plus 4 (times 2 (it/pro)))

Equal (it/pro, different tense) 18

where (it/pro) refers to (number) and (it/pro, different tense) refers

to (number, different tense).

264



Thus, many more.steps are required for STUDENT to process a
hypothetical problem than are required for a factual problem. The
difficulties are difficulties of syntax, and ma 9. be expected to
occur similarly in all of the hypothetical problems. We wish to
contrast this purely syntactic analysis with the view that the
factual/hypothetical distinction has.sn important semantic component
--that hypothetical contexts might be more difficult (for a human
being) to visualize or imagine (on a level that is not exclusively
verbal).

Next we consider the processing of a concrete problem (6.3) by

STUDENT.

Susan has some dolts. Jane has five more than twice as
many, so she has seventeen dolls. How many dolls does
Susan have?

With mandatory substitutions, the problem becames:

Susan has some dolls. Jane has 5 plus 2 times as many,
so she has 17 dolls. How many dolls does Susan have?

With words tagged by function, we obtain:

(Suspolpdrson) (has/verb) some dolls (period/DLM) (Jane/person)
(h4giverb) 5 (plus/op 2) 2 (times/op 1) as many, so (she/pro) (has/verb)

.-// dolls (period/DLM) (How many/Q word) dolls does (Susan/person)
(have/veib) (?/DIM)

The simple sentences are:

(Susan/person) (has/verb) some dolls (period/DLM)

(Jete/person) (has/verb) 5 (plus/op 2) 2 (times/op 1) as many

(She/pro) (has/verb) 17 dolls (period/DLM).

(How many/Q word) dolls does (Susan/person) (have/verb) (?/DLM)

An idiomatic substitution must now be made throughout the problem,
changing "SuSan has some dolls" to "There is a number of dolls Susan
has;" "Jane has ..." to "The number of dolls Jane has....;" and so
forth. For example, the last sentence becomes:

(What/Q word) is thenumber (of/op) dolls (Susan/person)
(has/verb) (?/DLM)

The first sentence is again redundant. "(She/pro)" in the third simple
sentence,refers to the person named last, thus posing no difficulty. ,
The comparison "as many" must be processed 'by inserting its completion
"as Susan has," which then undergoes idicimaticsubstitution. The

equations which result are:

2e5
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Equal X (aulber of .dolls (Susan/person) (has/verb))

Equal Y (number of dolls (Jane/person) .(has/verb))

Equal (number of dolls (Jane/person).(has/verb)) (plus 5
(times 2 (number of dolls (Susan/person) (hasiverb))))'

Equal (number of dolls (Jane/person) (has/verb)) 17

Ye see .that more stepi are required for a concrete problem than

for an abstract problem; the language processing for the concrete
problem reqtares additional idiomatic substitutions in order to refer
to the number of objects of each kind, rather than to the objects

themselves. Again, the differences in processing by .STUDENT are due
'solely to the syntax differentes associated with the abstract/contrete
variable. In contrast, regarding this variable as a context variable
emphasizes the differences in the actual situations-described by the
problem statements, leaving,open, for example, the possibility that
(fora hudan being) concrete situations might be easier to visualize
or imagine than abstract situations.

Problem 6.4, being both concrete and hypothetical, is the most
complicated for STUDENT to process.

To summarize, the abstract/concrete and factual/hypothetical
classificatiohs may be thought of as context variables, for which a
developmental theory might predict concrete factual problems to be
the easiest and 2bstract hypothetical problems the hardest, with the
differences tending to disappear for older children. However, each
of these variables has a syntactic component, for which a STUDENT-
type information-processing model might predict abstract factual
problems to be the easiest and concrete hypothetical problems the
most difficult.

Next, we return to the discussion of the system of experimental
problems ln Table 6.1. The problem sets were designed to hold con-

,
stant within each set a list of task variables which were not of

experimental interest; we shall describe how this was done.

Controlling for Syntax Variables

Problem Length

The length of each problem is described by the number of words,
counting each numeral as one word, and not counting articles. The
number of sentences is held constant for all problems within a set,
while the number of words varies by no more than 10 percent of the
number of words in the shortest problem in the set. The values of
these variables are objectively determined and easily re-checked;

thus no additional validation was considered necessary (seeTable 6.3).

266
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Table 6.3 Maraoterietioe of the Experimental Problems

Set Problem Dm. !Jew' Li
Number of
Sentences

Numerical Data
v Tz verbal, n - numeral Syntactic Complexity

1 (a) CF 23 3 32 (n) 23 (v) 3.33
(b) CH 24 3 34 (n) ; 2 (v) 4.33
(c) AF 22 3. 33 (n) 13(v) 3.33
(d) AFI 24 3 34 (n) 22 (v) 4.00

, It
2 (a) CF 24 3 7 (v)24fv) , 15 (v) 3.33

(b) CH 25 3 8 (v) ,3 (v) 216 (v) 3,33
(c) AF 26 3 6 (v) , S (v) 216 (v)* 3,33
(d) AH 24 3 9 (v)23(v) 217 (v) 3.67

3 (a) CF 28 2 7(v) 23(v) 231 (n) 7.00
(b) CH 26 / 9 (v) 22 (v) 225 (n) 6.50
(c) AF 26 2 8 (v) , 6 (v) 144 (n) 7:50
(d) AH 27 2 8 (v),5(v),33(n) 7.00

4 (a) CF 33 3 3 (v) 25 (v) 248 (n) 5.00
(b) CH 34 3 2 (v) ,4 (v) 242 (n) 6.00
(c) AP 33 3 3 (v) 24 (v) 256 (n) 6.00
(d) AH 35 3 2 (v) 25 (v) 249 (n) 5,00

5 (a) CF 23 3 3 (...,) ,39 (n) 3.00
(b) C/1 24 3 4 (v) 248 (n) 4.00
(c) AF 24 3 5 (v) 255 (n) 3,33
(d) AH 25 3 2 (v) 228 (n) 3.67

6 (a) CF 52 4 4 (v) 22 (v) 22 (v) 22 (v) 24 (v) 2132 (n) 6.00
(b) CH 53 4 4 (v) 26 (v) 26 (v) ,6 (v) 24 (v) , 156 (n) 6.75
(c) AF 49 4 4 (v)24(v)24 (v)24 (v) 24 (v) 2184 (n) 6.00
(d) AH 49 4 4 (v) ,3 (v) 23 (v) , 3 (v) 24 (v) 2178 (n) 7.00

(a) CF 22 2 1/4 (v) 243 (n) 4.00
(b) CH 22 2 1/3 (v) 235 (n) 4.50
(c) AF 21 2 1/5 (v) 242 (n) 5.00
(d) AH 21 2 1/4 (v)228 (n) 5,00

8 (a) CF 32 3 8 (v) 2 (v) 24 (v) 2318 (n) 5.67
(b) CH 33 3 4 (v) 26 (v) 22 (v) 2136 (n) 6.67
(c) AV 32 3 6 (v) 22 (v)24 (v) 2126 (n) 6.33
(d) AH 31 3 6 (v) 24 (v) 22 (v) 2126 (n) 6.33

2 b.
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Sequencing of Information

Within each set of problems, corresponding problem elements are
presented in the same sequence. The order in which the numerical
information appears is the same, and the question.appears at the end
of each problem. For example, all problems in Set 5 have the under-
lying equation ax mrb, where a and b are given and x is unknown.
In each problem a is giVen first, then the operation of multiplica-
tion is indicated, then a phrase occurs describing the unknown
quantity, then equality is asserted to a given value of b, and
finally the unknown quantity is asked for.

No extraneous numerical information is needed to solve any prob-
lem. For example, in Problem 8(a) it is not assumed but stated
explicitly that hens have two legs and dogs have four. Likewise,
there are no coin problems in which the values of coins are assumed.

Where there is irrelevant numerical information, the same data
are included in all problems within-the set. For examplebin Set 6
the same number "four" in the first sentence of each problem does
not enter into numerical computation. However, this rule was not
enforced for ordinals (first, second, third, etc.) which were treated
as ordinary English adjectives. Thus Problem 6(b) mentions "the first
camel," "the second," and so forth, while in Problem 6(a) ths members
of the Smith family are described by name. In retrospect it might not
have been too difficult to change this particular problem set so that

the ordinal numbers were the same in all four problems--we might have
described four "sisters" in the Smith familyf and referred to them as
"the first sister," "the second," and so forth. However, in many of

the abstract problems it was necessary to refer to "a number" and "a
second number," this wording would have become awkward if it had been
used in the corresponding concrete problems (e.g., "a student" and "a

second student" instead of "Charlie" and "Amanda" in Problem 2(b)).

Participants in the mathematics education doctoral seminar veri-
fied as a group that the sequencing of the data was the same for all
problems within each set. Unanimous agreement was obtained without

any difficulty.

Numerals and Mathematical Symbols

Within each set of problems, the corresponding numbers have the
same number of digits and are of the same type--whole numbers or frac-

tions. Corresponding numbers are also of the same.written form--
either words or numerals. No special mathematical symbols appear in

any of the problems..

Themumbers and the forms of the numbers appearing in each prob-
lem are listed in Table 6.3. It was not deemed necessary to validate

these variables.
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Table 6.4 Assigned Counts for Camputing the Syntactic Complexity
Coifftcient (based on Botta, Dawkins and aranowsky, 1973)

0-count Structures

The most frequently used simple sentences

Subject-Verb CAdverbial)
Subject-Verb-Object
Subject-Verb-be-Complement

The complement may be an adjective, as in "He
is big," a noun as in "He is a clown," or an
adverb as in "He is there."

Subject-Verb-Infinitive

SV(Adv)
SVO
SVbeC

SVInf

Simple transformations, such as interrogatives (simple questions and
tag-end questions), exclamations, and imperatives.

Coordinate clauses joined by "and"

Non-sentence
greetings,
responses,

expressions, such as nouns of direct address,
calls and attention-getters, interjections,
empty phrases, and sentence openers

There is no extra count for verb expansions using auxiliary verbs
such as "be," "have," "do," "will," and "can," intensifier expansions
such as 'very," or determiner expansions such as articles, demonstrative
pronouns and possessive pronouns.

1-count structures

Less frequently used sentence patterns

Subject-Verb-Indirect Object-Direct, Object
Subject-Verb-Object-Object Complement

SVIO
SVOC

Any prepositional phrase added to any of the 0-count structures

Noun modifiers, such as adjectives, nouns, predetefihiners (e.g.
. "all of," "one of,"), possessive nouns, adjectival participles
(-ed and -ing forms)

Other modifiers, such as adverbial additions to .the 0-count
structures, modals, and negatives (however, adverbial structures
which begin a sentence are 2-cdunt structures)

continued

.2r4
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Table 6.4 (continued!)

1-count structures (oontinuad)
I.

Familiar idiomatic eXpressions such as "once in a while," " years
old," "more or less," etc.

Infinitives not inmediately following the verb

Gerunds used as subjects

Ciauses joined by coordinating conjunctions other than "and"

Deletion in coordinate clauses (or compound objects of prepositions, as
interpzeted by the present authors)

The paired conjunction "both and"

2.count structures

Passive transformations

Paired conjunctions C"either ... or ...," "not ... but .,.," etc.)

Comparatives ("as as," "same . as," "more ... than," etc.)

Dependent clauses (adjectival clauses, adverbial clauses, nominal clauses)

Participles_apRearing after a noun, or separated from it by commas

Th infinitive as a subject

Appositives

ConjuNtive adverbs (e.g. "thus," "however," "therefore")

1-

3-count ;trijctures

Clauses used as subjects

Absolutes
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Syntactic Compiexity
-

In order to control for syntactic complexity, the system developed
by Botel, Dawkins, and Granowsky (see Chapter II) was adapted to mathe-
matics word problems (Botel, Dawkins, and Granowsky, 1973). The system
takes into account many of the grammatical structure variables des-
cribed by Barnett in Chapter II. For each problem, a syntactic com-

plexity coefficient is cotputed. This coefficient ranges from 3.00 to
7.50 for the entire system of experimental problems, but within each
set its range varies by no more than 1.00. (A primary reading program
would typically include sentences having an average complexity of three
or four points.) Thus, while the syntactic complexity varied from set
to set, it remained relatively constant within each set of four prob-
lems (see Table 6.3).

The syntactic complexity coefficient is based on a theory of
transformational grammar suggesting that complex sentefites are derived
from changing and combining structures such as simple sentences. The
formula was originally developed and tested with school children in
the primary grades. Its use is described as follows:

To apply the syntactic complexity formula to any passage,
each sentence in the passage is assigned Ja complexity rating.
These ratings are then averaged to obtain the complexity
rating for the entire passage. The complexity rating for a
sentence is determined by comparing the structure of the
sentence to the structures described and illustrated... The
basic structure of the main clause of the sentence is
assigned a count of 0, 1, or 2 and counts are added for
additional features or structures that add complexity. For

example, the senterwe "His vacation over, the tired doctor
diove home" has a complexity count of four: The basic struc-
ture ... ("The doctor drove home") gets a count el 0 ...
Since the subject ("doctor") is modified by an adjective
("tired") a count of 1 is added ... The absolute ("His
vacation over") at the beginning of the sentence adds an
additional count of 3 ... The whole sentence thus receives
count of 0 + 1 + 3 4. (Botel, Dawkins, and Granowsky, 1973)

Table 6.4 lists the 0-count, 1-count,2-count, and 3-count structures
according to Botel, Dawkins, and Granowsky.

The aaalysis of several structures e4mmon in mathematical word
problems was not made explicit in the o iginal system. The follows-
ing.sentences illustrate these structu es, and display the inter-
pretations we have made:

(1) "One humber is three more than a seeond number." The basic
sentence here is "number is more," a Subject-Verb-be-
Complement pattern (SVbeC), which counts 0 points. The
adjectives "one," "three," and "second" each receive 1

2 7,1
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point, and the comparison "'more than," together with
its object."a number," receives 2 points. Thusthe
total for thip sentence is 5.

(2), "A number is five more than three times a second number."

basic sentence is "number is more." The adjectives
ivb,r °three," and "second" each receive 1 point. The

0 con.,risoh "mbre than" and the 'relational expression
"times" each receive 2 points. The sentence total is

thus 7.

(3) "iive times six is 30." The subject of the sentence is
'itself a phrasethus 1 point is initiallWdded to the
couht. The relational-eXpression_"times" receives 2
points, so that the total is 3.

;

(4) "A. number is five more than three times as large as a
setond number." The basic sentence i&"nUmber is more."
The adjectives "five," "three," and "second" count 1
point each; the comparisons "more than" and "as large as"
and the relational expression "times" count 2 points
each, for i total of 9.

(5 "The sum of five and a number is-fifteen." The basic
sentence is "sum is fifteen." The prepositional phrase
"of five and a number" counts 2 points: 1 point for the
prepositional phrase per se, and 1 point for the compound
object of the phrase. The sentence total is 2.

(6) "John is two years older than Mary." The basic sentence
is "John is older." The comparison "older than" receives
2 poifits, and the adjective "two" receives 1 point. In

addition, since the phrase "two years" modifies "older,"
it receives 1 more point. The total number of points is 4.

(7) "One number is twice as large as a second number." The
basic sentence is "number is large." The. adjectives
"one" and "second" and the adverb "twice" each receive 1
point. The comparison "as large as" receives 2 points,
for a total of 5.

We shall indicate the computation of the syntactic complexity
coefficients for just one set of experimental problems. The compute-
tiOn4-for,the full set of problems may be found in the second author's
die4ertation (Caldwell, 1977).

3

Set 8 (a) "A young farmer has eight more hens than dogs." 5

I-count structures:

2-count structures:

Adjectives ("young"; "eight"; "eight
more" modifies "hens") 3

Comparison ("more ... than") 2 ,

272.
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"Since hens have two legs aach, but dogs.have-foUr
legs each, all toggsher the animals have 118 legs."

1-count structures: Adjectives ("two"; "each"; "four";
"each"; "118") 5, doordinating Conjunction ("but") 1,
Adverbs ("all"; "togeOer") 2 .

2-count structures: Dependent clause ("Since ...") 2

"How many dogs does the yoilng farmer own?"

1-count structures: Adjectives ("How many"; "young") 2

(b) "There are four more girls in an English class
than boys."

1-count structures: Adjectives ("four"; "four more"
modifies "girls"; "English") 3, Preposit/Onal phrase
("in an English class") 1

2-count structures: Comparison ("more ... than") 2

10

2

=INIM

17 '

6

"If there were six times as many girls and twice as 13

many boys, there would be 136 pupils."

1-count structures: Adjectives ("sie; "twice"; "136")
3, Coordinate clause deletion ("and [there were] twice
as many ...") 1, Modal (" ... were .,., ... would be

...") 1

2-count structures: Dependent clause ("If ...,") 2
Comparisons ("times"; "as many"; "as many") 6

"How many boys are there?"

1-count structures: Adjective ("How many") 1

(c) "The value of a given number ia'siX more than the
value of a second niimber."

1-count structures: Adjectives ("given"; "six"; "second")
3, Prepositional phrases ("of a given number"; "of a
second number") 2

2-count structures: Comparison ("more than").2

111MO

20

7

"The sum of two times the first number and four times 10

the second number is 126."
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I-count structures: Adjectives ("two"; "first"; "four";
IN second") 4, Prepositional phrase ("of second
numbet") 1, compound object of preposition ("of ...
and ...") 1

2-count strUctures: Comikrisons ("timeef "times") 4

"What is the value of the second number?"

I-count structures: Adjective ("second") I, Preposi-'
tional phrase ("of the second number") 1 1111110

19

(d) "A given number is six more than a second number." 5

1-count structures: Adjectives ("gtven"; "six";
second") 3

2-count structures: Comparison ("more than") 2

"If the first number were four times as large and the .13

second two times as large, their sum would be 126."

1-count structures: Adjectives ("first"; "four";
ft second": "two"; "their") 5, Coordinate clause deletion
("and the second [were] two ...") 1, Modal ("... were
ose, sea would be") 1

2-count struCtures: Dependent clause ("If ...,") 2,
Comparisons ("times as large"; "times as large") 4

"What is the second number?" 1

1-count structures: Adjective ("second") 1 dorm.'

19

Since each of. the above problem statfments contains three sentences,

.
the syntactic complexity coefficients are, respectively, 17 4- 3 = 5.67,

20 4- 3 = 6.67, 19 4-'3 = 6.33, and 19 4. 3 = 6.33. These values are

entered in Table 6.3,

Computation of the syntactic camplexity coefficients requires some
degree of expertise, and no formal check of inter-coder reliability was

performed. As the study progressed and we gained familiarity with the
system, some values were recomputed; in fact,,the values for Set 8above
differ slightly from the values originally listed by Caldwell (1977).
Howeveri such disagreeMents as did occur were minor, and did not
challenge the correctness of the main assertion that the problems
within each set are of-approximately the same level of syntactic com-

plexity.

7.1
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Another limitation of our use of 0-.e syntactic complexity coeffi-
cient is the fact that pronountkper se represent 0-count structures.
In Chapter II it was pointed, At that pronouns could sometimes be
expected to increase problem difficulty; and the STUDENT program, as
we have seen, encounters complexities due to the use'of pronouns in

-hypothetical problems. Nevertheless, they are not counted in our
measure 6f syntactic complexity. Table 6.5 lies the number of pro-
nouns in each problem.

6. Controlling for Content and Context Variables

Vocabulary

Each problem uses only vocabulary which is appropriate for a
fourth-grade reading level, as given by the Dale List of 3000
Familiar Wards (Dale and Chall, 1948). The list is augmented by
numbers, propir names in common use, verb forms (-ed, -ing,
plurals, and comparisons (larger, older, etc.) which are not expli-

citly listed. These a...e assumed to be at the same reading level.
Technical mathematical vocabulary is avoided.

-Key Words

Key words (that is, English words which generally indicate speci-
G

fic mathematical operations) were not controlled as carefully as they
might have been within each problem set. Table 6.5 lists the key
words which appear in each problem. Included in the table are terms
which, although commonly functioning as key words, do not indicate
the uaual operation in the problem at hand. For example, the word
"older" frequently suggests addition or subtraction (as in Problem
f(a)); but in Problem 1(a) it is an irrelevant adjective.

The key words in Table 6.5 have further been arranged so that words
which indicate corresponding operations within each set ate directly-
beneath each other. This permits us to observe the extent.to which
parallelism among the key,words has been maintained. The following
stand out as discrepancies which might have been avoided: Problem2(a),
ihe adjective "older"; Problem 3(c), the terM "equitl".and Problem 3(d),
the terms "unknown" and "equal";" Problem 4(1), the word "spent"
(which often indicates subtraction but in phis prbblem indicates no
operation); Problem 5(d), the tert "equal"; Problem 6(a), the term
"equal" and Problem 6(b), the missing term "all," as well as the terms
appearing at the beginning of Problems 6(a)-(d); Problem 7(b), theword
receiv'e" (which often indicates additioi-but does not do so here);
Problems 7(c)-(d), the word "equal"; and Problem 8(b), the absence of
a key word to suggest addition. Furthermore, it is apparent fromTable-'
6.5 that the sequencing of key words which indicate operations is dis-
trepint in Problems 4(c) and 8(c)--although as we saw above the
sequencing of numerical information is the same for all problems
within each set.
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Table 6.5 AdWitionat Characteristics of" the EATerimental Pl'Ioblams

NUMber; of
Set Problem Pronoums

1 (a)

(b) 2

(c) 0

(d) 1

(a)

(b)
(c)

(c1)

4 (a)

(b)

(e)

(d)

(a)

(b)
(c)

(d)

6 (a)

(b)

(c)

(d)

7 (a)

(b)

(c)

(d)

8 (a)

(b)

(c)

(d)

1

1

2

1

Key Words

older times as many
times as many
times as large
times as large

How many
How many

What
What

more ;., than loses left How many
more .., than lost left How many
larger than smaller equals What
larger than smaller equal What

3 more than
more than

0 more than
2 unknown more than

1 . equal Each ...

2 equal twice as
0 equal sum times
1

.

equal twice as

1

2

0

2

3

0

0

0

2

0

2

times as old
times as old
times as large
times as large equal

times as many
twice as many

times
times as large

youngest
equal same

smallest
equal same

[fraction]
[fraction]
[fraction]
[fraction]

of
as much
of
as large

0 more ... -than -

0 more than
0 more than
0 more than

SUM

cost Each ...

many times as
times

large times as

How old
How old

What
What

older than
more than
more than
more than

receive
equal
equal

each
times as many

times
times as large

How many
How many

equal What
equal What

cost spent
many

large

older than
more than
more than
more than

How many
How much

What
What

unknown

in all
in all

equa1
sum

older than
more than
more than
more than

receive

each
twice as many

times
times as large

How many
How many

What
What

all equal How old
How many

all -What
all What

all together How many
How many

What

sum What

271
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It is certainly to be hoped that the discrepancies noted here in

key words are not sufficiently great to interfere with the effects of

the experimental variables. However, they are pointed out as limita-

tions in the achievement of our goal of holding constant each major

task variable except thoge which-are deliberately varied for experi-

mental effect.

Mathematical Content and "Pl.oblem 2Wes"

The problems within each set have been made as nearly identical

as possible with respect to mathematical content. Seta 2-5.

contain arithmetic problems with whole number givens and whole number

solutions. Within each set, the needed arithmetic operations are the
same for all problems. Seta 6-8 contain elementary algebra
problems. In Set 7, one of the givens in each problem Is a fraction;
otherwise all of the givens and all of the solutions are whole numbers.
Again, within each set the needed algebraic and arithmetic operations

are the same for all problems. Thus it appears reasonable to asSert
that the mathematical content of the problems within each set,is the
same.

Some of the problems fall into categories of familiar "problem

types" such as those discussed in Chapter III. These arer Problem
4(a), a "money problem"; Problems 5(a), 5(b) and 6(a), "age problems";
and problem 7(b), a "work problem." Of course, none of the abstract

problems fall into these categories. It was felt that this fact was
to some extent a natural consequence of the abstract/concrete dichotomy

as it was defined; therefore problems of such "types" ware not entirely
avoided in constructing the experimental instruments. However, it was
considered important that none of the problems rely on mathematical
relationships which were not explicitly stated, as often occurs with

these "problem types." Thus the "money problem" does not assume the
values of coins or the conversion of cents to dollars, and the "age
problems" do not employ expressions such as "four years from now" to
imply that four should be added to all of the ages. Th3 "work problem"
does not entail use of the proportionality of wages to rate of pay and

time workedk however, it does (unfortunately) assume that what John

If earns" is proportional to the amount fib "works." Thus Problem 7(b)
could have been improved by'changing the phrase "If John were able to
work only one-third as much," to "If John were.able to earn 'only one-

third as much."

Ihe variation in "problem types" which ocCurs with# problem sets
is thus interpreted as a contextual consequence of the abstract/con-
crete experimental factor, not affecting the mathematical content in

any important way. Nevertheless, in order to minimize any possible
interaction with the factuaf/hypothetical variable, it would.have been
better for PYoblems 4(b), 6(b) and 7(b) to have been of the same
"types" as 4(a), 6(a), and 7(a) respectivly. We shall return to
this point later, in the discussion of the-findings for Set 4.

1

c27
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Context FoxliZ

All of the experimental, problems are conventional rather than
imaginative in style, and the concrete problems all describe rela-
tively familiar objects for the subject population. However, apart

from the use of the Dale List of 3000 Familiar Words, no attempt"was
made to validate these assertions.

More importantly, it is to be expected that concrete and factual
problems are in general more familiar to the subjects than abstract
and hypothetical problems. A classification was performed for the
word problems in several current texts: in Modern School Mathematics.:
Structure and Use, K-6, more than 80 vercent of the word problems were
found to be concrete and factual (CF), and less than 1 percent were
hypothetical aNancan et al., 1974. In Mhthematics for Individual
Achievement, Books 7-8, for junior high school, 75 percent of the word
problems were CF and less than 2 percept were hypothetical (Denholm
et al., 1975). In one of the algebra texts by the same publisher, the
classification was 74 percent CF, 20 percent AF, and 2 percent hypo-
thetical (Dolciani and,Wooton, 1973); in the second-gyear algebra text,
the distribution was 75 percent CF, 19 percent AF, and 4 percent hypo-
thetical (Dolciani, Berman, and Wooton, 1973).

Thus in interpreting our findings we must be aware that there may
be effects due solely to the greater familiarity of concrete, factual
word problems.

Controlling for Structure Variables and the
Effects of Problem Sequence

Mathematical Algorithm

As has been pointed out in Chapter TV, the comPlexity of:the
algorithm needed to solve a verbal problem may strongly affect the
problem's difficulty. Thus, it was extremely important that the
four problems within each set require the same algorithm for their

solution. This is a particularly difficult variable to control, .

because it is possible that different individuals may -use somewhat
different algorithms to solve the same problem--that is, it is not
really possible to say that a given problem "requires" a uniquely
specified algorithmic procedure. Taking Problem 6.3 as an example,
most people would probably write the equation 5 + 2X = 17 and solve
for X. However, we saw that the STUDENT-type analysis yielded in
effect the equations Y =.5 + 2X and Y = 17; equations which require
a different algorithm (atd An additional step) for solution;.-:In short,

our actual goal was ta create problems withih each set which were iso-

morphic in the sense of Chapter TV--so that any algorithm appropriate
for one problem in a set would be appropriate for the others.

"O.
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a

Each problem set was first examined by participants in the
mathematics education doctoral seminar at the University of Pennsyl-

vania. Where necessary, problems were reworded or' reconstructed
until unanimous agreement was achieved that the problems warBT'
identical algorithmic structure. Two "Algorithm Validation Instru-
ments" were then constructed, with these instructions:

Each of the following groups contains four word problems.
If one of the problems differs from the rest in regard to
the algorithm which will be used to solve it, then circle
the letter corresponding to that problem od the answer
sheet: Different numerical constants do not indicate that
two word problems are different. For example, a problem
using the equation 2x + 5 .0 9,and one using the equation
3x + 7 = 28 are considered to be equivalent. If the under-
lying equation for all four problems is the same, then
circle "E" (None of the,above).

One version of the "Algorithm Validation Inatrument" included the

elementary word problems, and a second version included the high
school word probleM11:-#-Tach version actually consisted of ten sets'

of four problems each. Three of the sets on each instrument included
one problem which was clearly solved by a different algorithm from
the others; these sets were included so as to eliminate the possi-
bility of a "set" response among the validators and to confirm that
the validators understood the instructions. These "distraetor" sets
of problems were developed according to the same criteria as the
experimental problems, with the exception of.the difference in
structure, so that no additional cues would be available to the

validators. An example of a "distractor" set of problems is given

in Table 0.6.

The "Algorithm Validation Instruments" were designed to validate
eleVen sets of experimental problems in all, with some of the sets
appearing on both versions of the instrument. The elementary word
problems were validated by four secondary school ma:I:emetics teachers
and two preservice teachers; the high school word problems were vali-
dated by a different group of, four secondary school mathematica
teachers and two preservice teachers. Agreement was unanimous on
the eight problem sets eventually included in the study tha;: the
underlying equation for all four problems within each set is the same.

In Table 6.7, the equations needed to solve each problem are
tabulated. While the numerical constants %Mich appear may differ
from problem to problem within each set, it is important that the
path through the computational-algorithm be the same for all problems
within a set. Thus if one problem requires a "carrying" or "reiioup-
ing" operation in the course of a numerical computation, the other
problems should aR well. Table 6.7 thus characterizes the computa-
tional procedure required for each problem set. There was no independent
validation carried out for the identity of paths through the computa-
tional algorithm; evidently Set 6 has some imperfections in this ,respect.
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Table 6.6 A "Dietractor" Sat of Problems Ueed in the "A4gorithm
Validation Instrument"

Set D1 (a) The Jones family has two children, Sarah and Jeff.
Sarah is twelve years older than her brother Jeff
;and the sum of their ages is equal to 22, How old
is Jeff?

(b) A square field has four equal sides.
were fourteen feet wider than it is,
of the length and the width would be
is the field?

If the field
the product
72, How long

(0) Two numbers arc given. The first given number is
twelve larger than the second given number, and
their product is,pqual to 64, What is the value
of the s6cond giën number?

(d) ti and A are two equal numbers. If 0 were
thirteen larger than it is, then the product of
the new numbers would be 48. What is the value of
A ?

C7

CH

All
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Table 6.7 Mathematical. Equations and Computational Procedures pr the
Experimental Problems ,

Set' Problem Equation(s) Computational Procedure

1 (a) 3-32 = X 3.32 short multiplication, no carrying
(b) 234 = X 2.34

(c) 3-33 = X 3.33

(d) 234 = X 2.34

2 (a) X = 7+Y; Y-4 = 15 15+4+7 three addends, single carry
(b) X = 8+Y; Y-3 . 16 16+3+8
(c) X = 6+Y; Y-5 = 16 16+5+6
(d) X = 9+Y; Y-3 = 17 17+3+9

,

3 (a) 7 + 3X = 31 (31-7)/3 simple borrow; division fact
(b) 9 + 2X = 25 (25-9)12

(c) 8 + 6X = 44 (44-8)/6

(d). 8 + 5X = 33 (33-8)/5

4 (a) X = Y; 3X + 5Y = 48 48/(3+5) addition fact; division fact
(b) X = Y; 2X + 4Y = 42 42/(2+4)

(c) X = Y; 3X + 4Y = 56 56/(3+4)
(d) X = Y; 2X + 5Y = 49 491(2+5)

5 (a) 3X = 39 39/3 short division, no remainders
(b) 4X = 48 48/4
(c) 5X = 55 55/5
(d) 2X = 28 28/2

6 (a) Y = X+2; Z Y+2; W og Z+2; X+Y+Z+W = 132 (132-(2+(2+2)+(2+2+2)))/4 see below

(b) Y = X+6; Z = Y+6; W Z+6; X+Y+Z+W = 156 (156-(6+(6+6)+(6+6+6)))/4
(c) Y X+4; Z = Y+4; W = Z+4; X+Y+Z+W 184 (184-(4+(4+4)+(4+4+4)))/4
(d) Y = X+3; Z = Y+3; W = Z+3; X+Y+Z+W = 178 (178-(3+(3+3)+(3+1+3)))/4

The repeated additions in Set 6 require varying columns and
carries; however each of these may be replaced by a multiplication
fact. Subtraction without borrowing; short division, no remaihders.

7 (a) (1/4)X = 43 4-43 short multiplication, single carry
(b) (1/3)X = 35 3.35

(c) (1/5)X 42 5.42

(d) (1/4)X 28 4.28

8 (a) X Y+8; 2X + 4? 118 (118-2.8)1(2+4) multiplication fact; subtraction

(b) X Y+4; 6X + 2? = 136 (136-6.4)1(6+2) without borrowing; short division,

(c) X Y+6; 2X + 4? = 126 (126-2.6)/(2+4) one intermediate remainder.

(d) X Y+6; 4X + 2? 126 (126-4.6)/(4+2)
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Computational Skills Test

Since the purpose of the Study was to examine the effects of

certain syntax and/or context variables, it was desired to separate

out in some way the possible effects of limitations in computational

skills among the students taking the tests. That is, we wished to
verify that any differences in difficulty which might emerge among
the CF, CH, AF, and AH problems would continue to appear even aniong

students who evidenced all of the Computational skills necessary to
solve all of the verbal problems.

Accordingly, a camputhional skills test was devised at the
elementary, intermediate, and advanced levels. Each computational
skills test consisted of fAve.sets of two problems each, testing
the computational algorithms'becessary to solve the corresponding
word problem sets. The computational skills test items are listed
by sets ia Table 6.8. A subject was defined to "pass" thi computa-
tional skills test if he or she answered correctly at least one of
each pair of items, thus providing soime evidence of being able to
perform satisfactorily on each computational algorlthm.

Problem Sequence

k

The order in which the p- are presented may affect their

difficulty; therefore it was sr, to consider the sequencing of

problems very carefully. SL, ,as of problems were constructed
which (a) separated the four problems withirreach set from each '

tether; (b) avoided successive problems of the same'experimental type
(CF, CH, AF, or AH), and (c) placed problems with shorter computa-
tional procedures both near the beginning and near the end. This
scheme is illustrated in Table 6.9 for the elementary test; the other
two tests were sequenced similarly. The position of each problem on
each test may be determined from Table 6.10.

The experimental problems were administered in two parts (I and
II), with two forms (A andeB) of each part. Form I-A contained prob-
lem sequences 1 and 2; form I-B contained sequences 2 and 1; form
II-A contained sequences 3 and 4; form II-B contained sequences 4

and 3. Test order (Part I first or Part II first) was one of the
factors in the experimental design; but within the Part I first group,
half of the subjects (randomly selected) received form A and half
received form B. Thus, within each set of problems,.all four prob-
lems occupied the same position-40n the test equally often.

The computational skills test was likewisg administered in two
parts consisting of five problems each, one from the pair testing

each computational algorithm.
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Table 6.8 Computational Skills Test Items Arranged by Sets

Seti 32 x 2 = 0

33 x 3 =

Set 2 8 + 4 + 15 . 0

9 + 3 + 15 . E3

Set 3 9 + (5 x ) 1 34

7 + (3 x 0 ) 34

Set 4 (3 x ) + (6 x ) 54

(5 x CI ) + (3 x E3 ) . 56

Set 5 3 x 0 36

4 x 0 . 44

Set 6 E3 (ID+ 2) + (0+ 4) + 0 + 6) 172

E3 + ([3+ 3) + (0+ 6) + ( + 9) 138

1Set 7 x . 28
5

1 x 27

On the advanced test, algebraic notation was used; thus the items for Set 3

were written "9 + 5x 34" and "7 + 3x = 34," on the advanced test.

Set 8 4x + 3(x + 4) 124

5x + 3(x + 7) = 133
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.

Table 6.9 Four Sequences of Problems Constructed in Order to Separate
Problems from the Same Set (Elemeneary Test)

Setl Set 2 Set 3 Set 4 Set 5

Part I: Sequence l CH AF CF AF AH .

Sequence 2 AF CF CH AH CF

Part II: Sequence 3 CF AH AF CH AF
Sequence 4 AN CH AH .CF CH

. _

shorter longer shorter
computations computations computations

285
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Table 6.10 Position of Each Prablem on Each Test

Set Problem Part I (Form A) Part I (Form B) Part II (Form A) Part II (Form B)

Elem, Int. Adv. Elem. Int. Adv. Elem. Int. Adv. Elem, Int. Adv.

1 (a)
(b) 1
(c) 6
(d)

2 (a) , V7

(b)
(e) 2
(d)

(a) 3
(b) 8
(c)
(d)

4 (a)
(b)
Cc) 4
(d) 9

5 (a) 10
(b)
(c)
(d) 5

1 6
6
1

6 1

7 2 2

7 7 2 2
2 7 7

2 2 7 7

3 3 8 8 8
8 8 3 3 3

3 3 3 8 8 8
8 8 8 3 3 3

9 9 9 4 4 4
4 4 4 9 9 9

4 4 9 9 9
9 9 4 4 4

5
10 5

5 10
10

10 10 5 5
10 10 5 5

5 5 In 10
5 5 10 10

, 1 1 6 6
1 1 6 6-
6 6 1 1

6 6 1 1

7 2
7 2

2 7
2 7

21366
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6. Experimental Finding!

The numbei of correct solutions to each verbal prolem.among the
various subject populations is tabulated in Tables 6.11 through 6.16.

It is intended that the results of the multivariate analyses, levels
of significance, and interactions among the factors be reported else-

where. Here we shall summarize only the main effects for the
concrete-abstract and factual-hypothetical factors, and look once

more at the experimental problems.

For the elementary test, significantly more concrete problems

than abstract problems were solved by the subject population (p<.01).
Perhaps surprisingly, significantly more hypothetical problems were
solved than factual problems (p< .01). However, there was a signifi-

cant interaction between the two experimental factors (p< .01). Por

concrete problems, the factual and hypothetical versions differed
little in their level of difficulty, with the exception of Problems
4(2) and 4(b); Problem 4(a), the factual problem, is considerably less
difficult. Por abstract problems, the factual versiohs were consis-
tently more difficult than the hypothetical versions.

For the intermediate test, significantly more concrete problems

thin abstract problems were solved (p< .01), and significantly more
factual problems than hypothetical problems were solved (p< .01).

There was again a significant interaction between the two experimental

factors (p< Por concrete problems, the factual versions were
leas difficult than the hypothetical versions. For abstract problems,

the factual and hypothetical versions differed Yittle in their level

of difficulty. Again Set 4 makes a large contribution to the lesser
difficulty of CF as compared with CH problems. Set 7 also makes a

large contr4ution to this effect. In addition, Problem 7(d) is sub-
stantially mdre difficult than Problem 7(c), although most other AH
problems are less difficult than the corresponding AF problems.

Por the advanced test, concrete problems are again significantly
less difficult than abstract problems (p< .01), but the magnitude of

the effect is smaller than for the elementary or intermediate tests.
In addition, factual problems are less difficult than hypothetical

problems (p<.01). For this test there was no significant interaction
between the concrete-abstract and factual-hypothetical factors.

For the three analyses of variance on problems common to two or
more tests, concret.a problems are again significantly less difficult

than abstract problems, and there is a significant interactiOn between

the two experimental factors.. For concrete problems, the hypothetical
versions are more difficult, while for abstract problems the factual
and hypothetical versions differ little in, their level of difficulty.

The above results continue to hold when attention is restricted

to students who passed the computational skills test. While there are
significant interactions with the "test order" factor in some of the

287
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analyses, the interactions do not chant& the relative orderlof diffi-

culty of the CF, CH, AF, and AR problems.

There are many interesting points which can be made injnterpre-
tation of the above findings, which are keyond the scope of this

chapter. Since we are principally interested in the use of the
"task variables" approach to design the system of experimental prob-
lems, let us look back once more at the problems which seemed to
produce effects different from other problems of the same types--as

mentioned above, 4(a) and 4(b), and Set 7.

None of the task. variables which we have examined in such pains-
taking detail seem to account for the fact that Problem 4(a) is
substantially easier than Problem 4(b) for every population of
subjects (see Tables 6.3, 6.5, and 6.7 for tabulation of the varia-

blec). If this werodue exclusively to the factual-hypothetical
variable, we would expect to see a similar strong effect in other
problems, which we do not. Could it be due solely to the "problem
type" classificatim of Problem 4(a) as a "money probleer There is
another possible explanation, one which was overlooked in the con-

struction of Problem 4(a). Referring to the statement of the problem,
we see that it is possible to reason as follows: "Each plant cost
three dollars and each flowerpot cost five dollars, so that the pair
cost eight dollars. Since Alan spent 48 dollars in all, he must have

bought six plants." The analogous line of reasoning is almost impossi-
bly awkward to state for Problem 4(b), despite the fact that the prob-

lems have identical or isomorphic structures. This is due to an
unintentional interaction between context and st ure--the fact that

plants and flowerpots are naturally paired, especial or purchase,
facilitates a certain chain of reasoning in Problem 46a 'which, is not
equally facilitated in Problem 4(b). Problem 4(a) could thus have
been improved, for purposes of this study, by having Alan buy an
equal number of plants and baseballs.

Of course we do not know if the above is a correct explanation of
the lesser difficulty of Problem 4(a). But this instance points out
the extreme sensitivity which may exist towards minor wording changes

in a verbal problem, and the extraordinary difficulty of controlling
for every task variable which may affect an experimental optcome.

In'Set 7, we have already noted that Problem 7(b) entails the
assumption of a proportionality between the amount John works and the
amount he earns, which is not explicitly stated in the problem. This

may be causing Problem 7(a) to be less difficult than Problem 7(b) for

the junior high school students. Finally, Problem 7(d) may be more
difficult than Problem 7(c) for an unanticipated reason. In Problem

7(d), the underlying equation is (l/4)X = 28. The student wto erro-
neously divides 28 by 4 will azTive at a whole number answer. In

Problem 7(c), however, the underlying equation is (115)X = 42, and the
temptation may not be so great tb.divide 42 by 5, Since the answer
would in this case be a mixed number, Although Problems 7(c) and 7(d)
are of identical structure with respect to the correct arithmetic

ft
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Table 6.11 Number of Correct Solutions to Each Problem by All Elementary
School Subjects

(

Set CF CH AF AH 399

1 324 320 271 302
2 211 199 66 88
3 49 65 39 62
4 129 74 49 .62
5 245 249 165 249

Tot. 958 907 590 763

Table 6.12 Number of Correct Solutions to Each Problem by Elemintary School
Subjects Meeting the Computational Skills Criterion

Set CF CH AF AH N = 112

1 104 104 92 97
2 71 77 31 38
3 26 32 23 33
4 55 33 19 28
5 93 97 75 102

Tot. 349 343 240 298

28 u
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Table 6.13 Number of Correct Solutions to Each Problem by AU junior

Righ School Subjects

Set CF CH
,

AF AH N = 813

2 609 621 287 361

3 358 376 368 378

4 530 357 321 326

6 356 286 305 301

7 541 458 440 397

Tot. 2394 2098 1721 1763

Table 6.14 &ether of Correct Solutions to Each Problem by Junior Righ
School Subjects Meeting the Computational Skills Criterion

z

Set CF CH AF AH N = 281

2 236 250 148 177

3 213 195 '208 214
4 231 194 179 182

6 206 175 188 189
7, 243 221 237 214

Tot. 1129 1035 960 976

20
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Table 6.15 Number of Correct Solutions to Each Problem by All High
School Subjects

Set CF CH AF AH N = 274

3 211 200 213 204
4 213 171 187 176
6 185 182 178 182
7 223 213 215 206
8 147 146 119 119

Tot. 979 912 912 887

Table 6.16 Number of Correct Solutions to Each Problem by High School
SWojects Meeting the Computational Skills Criterion

Set CF CH AF AH N = 197

3 180 172 185 176
4 179 157 169 157
6 171 162 161 166
7 179 178 184 172
8 137 141 113 116

Tot. 846 810 812 787
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oppration, they are not of identical structure with respect to the

(popsibly most frequent) incorrect operation. Again, we are not

sure if this feature accounts for the greater difficulty of Problem
7(d), but it illustrates the ease with which potentially important
task variable differences can be overlooked.

7. Concluston

In this chapter, we have shown in detail how the task variables

discussed in the first half of this book entered into the construction
of a verbal problem-solving instrument. The purpose was to control

for all task variables which were not of direct experimental interest,
in order to ensure that observed effects were due exclusively to the

experimental factors. Such an undertaking would seem to be a prere-

quisite for obtaining reproducible and generalizable findings.

This effort was partially but not completely successful. The

development of the problem instruments, together with the validation
procedures described, took more than a year; and, even so, the control

was not perfect. Ue have endeavored, however, to establish a standard
for such studies by elaborating on the imperfections as well as the

successful procedures. It is hoped that by making available the
details of our approach to other researchers, the concept of systema-
tically controlling for task variables will find other adherents, and
the state of the art will advance beyond that which is described here.
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This study illustrates.some of the effects which may be observed
by controlling for structure variables across a series of tasks.
Three tasks were developed for the purpose of studying conjupctive
concept acquisition in a problem-solving framework. The'prIncipal
independent variables in the tasks are context variables, and may be
defined as (1) the degree of abstractness of the defining attributes
of the conjunctive concepts, and (2) the degree of diversity of the
universe of objects which do or do nor exemplify the conjunctive con-
cepts. A third independent variable, uhe order of.presentation of
the tasks, qualifies as a treatment variable. The purpose of the
study was to measure the effects of these variables on overall task
difficulty, the usage of particular strategies, and the efficiency
of the strategies (Waters, 1979).

Background

In the literature on "concept acquisition" tasks, a concept is
defIned by means of some combination of attributes of the stimuli
which are presented in the task. The goal of the preblem solver is
usually to learn which combination of attributes defines the concept.
The book A Study of Thinking (Bruner, Goodnoy, and Austin, 1956) was
che pioneering work in this area, and many follow-up studies since
then have concentrated on how subtle changes in the task itself may
influence subjects' performance.

The basic task consists of an array of cards containing pictures

of objects. These cards are "patrixed" over a number of attributes,
with each attribute having several possible attribute values. The

goal of the subject is to verbalize the particular combination of
attribute values known to the experimenter as the goal concept. In

the basic task, the experimenter begins by indicating a cord which
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is an example of the goal concept. The subject then chooses cards
one by one to test whether they are examples of the goal concept,

and after each.choice the experimenter indicates "yes" or "no." The
subject may also make a hypothesis as to the identity of the goal
concept after any card choice; the task terminates when the subject
correctly identifies the goal concept.

Bruner and his associates investigate in detail the strategies
employed by subjects in performing this task. The four main strate-
gies identified are called conservative focusing, focus gambling,
successive scanning, and simultaneous scanning. The existence of
the focusing and scanning strategy groupings has been replicated
many times, but objections have been raised to the methods employed
by Bruner and his successors in scoring for the usage of these strate-
gies. Chapter TV reviews some of the literature involving strategy
scoring systems, and Laughlin (1973) provides a valuable review for
concept acquisition tasks. In the present study, we propose new
definitions of the scanning and focusing strategies to mirror more
precisely the intent of the problem solver during the'task performance.

In the literature it appears rather consistently tbat fdcusing
strategies are more efficient in concept acquisition tasks than scan-
ning strategies, with the implication that focusing strategieware
therefore preferable for concept attainment in non-laboratory learn-
ing situations. However, we suggest that the usefulness of the
focusing strategies may result principally from characteristiet of
the tasks which do not carry over into real-life situations. More
specifically, most previous experiments utilize only attributes which
are immediately identifiable by subjects,,such as Shape, size, and
color, while in real-life problems, the possible relevant attributs
may not be known ahead of time.

In order to investigate these ideas, new card tasks were developed,
which are described in detail in the following sections. Task 1 is
intended to replicate the basic.task of.Bruner and his associates,
with immediately identifiable attributes. In Task '2 and Task 3, one
attribute has been changed from an easi19. recognizable attribute to a
more abstract attribute which may not be so easily discerned. In

addition, Task 2 contains a greater diversity of objects than Task 1,
and Task 3 a still greater diversity of objects.

General Design of the Study

The purpose of this study was to measure effects on (a) overall
difficulty, (b) strategy usage, and (c) strategy efficiency for three
tasks, which are structurally isomorphic yet differ,in embodiment.

A 3x5 orthogonal factorial design was employed, with three task
groups and five experimenters. Each group received two of the three

tasks. Group A received Task 3 followed by Task 1; group B received

2 u
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Task 2, followed by Task 1; and group C received Task I followed by

Task 3. One-hundred-eight female college undergraduates were employed

as subjects. Thirty-six subjects were assigned at random to each of

the task groups. The five experimenters administered the tasks to 36,

24, 18, 18, and 12 subjects, respectively. Each experimenter's sub-

jects were divided equally among the three task groups. For each

subject on each of the two problems, five dependent variables were
measured. These are: (1) number of card choices to solution, (2)
time to solution, (3) problem solved (.1) versus problem not solved
(=0), (4) intended focusing index (defined below to be the number of
focusing choices/number of choices to solution), and (5) intended
scanning index (defined below to be the nuMber of scanning choices/
number of choices to solution).

A summary of the results of this study will follow a more
detailed description of the task variables.

2. Analysis of Task Structure

Structurally rsomorphic Tasks

Task 1 is essentially a replica of Bruner's basic task. Subjects

are asked to Identify a conjunctive concept which is defined by attri-
butes which are "matrixed" on a. board before them (see Figure

7A.1). In Task 1, four perceptual attributes are employed. These

are: shape (circle, square, or triangle), color (red,,green, or brown),
size (large or small), and number (one object or tWo objects). The

objects used as enemplars of attribute value combinations vary over
only one dimension, the dimension of shape.

In Task 2 (see Figure 7A.2), the goal is also to identify a con-
junctive concept. However, the dimension of shape has been replaced
by a less perceptually apparent attribute, that of "animal life-
plant life-inanimate object." Furthermore, there is a greater

diversity of objects: objects vary over both this attribute and the

attribute of color. Thus in Figure 7A.1, we have "one small red
circle" and "one small green circle." In Figure 7A.2, Rowever, we
have "one small red apple" and "one small green cactus."

In Task 3, the same attributes are employed as in Task 2, but
the objects used as concept exemplars vary over all four relevant
dimensions (see Figure 7A.3).

The principal independent variables in the tasks are in the cate-
gory of problem context and may be defined as the degree of perceptual
immediacy in the defining attributes of the concepts, and the degree
of object exemplar diversity employed in the representations of the
combinations of attributes. The tasks are designed to measure the
effects of these variables on the usage and efficiency of various
strategies employed in solving the tasks.
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Figure 7A.1. Task 1, Conjunctive Concept Acqut ion (Schematic)

one one one one one one two two two two two two
small small small large large large small small small large large large
red red red red red red red red red red red red
circle triangle square circle triangle square circles triangle; squares circles triangles squares

,

. _._

one one one one one one two two two two two two
small small small large large large small small small large large large
green green green green green green green green green ,green green green
square circle triangle square circle triangle squares circles triantleesquareS circles triangles

__ -4 . I 4 4

one one one one one one two two two two two two
small small small large large large small small small large large large
brown brown brown brown brown brown brown brown brown brown brown brown
triangle square circle triangle square circle triangles squares circles trianglesisquares circles

-

On thu board presented to subjects are pictures of the.objects described.
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Fgure 7A.2. Task 2, Conjunctive Concept Acquisition.

one one one one one one two two two two two two

small small small large large large small small small large large large

red red red red red red red red red red red red

apple bell fox apple bell fox apples bells foxes apples bells foxes

one one one one one one two two two two two two
small small small large large large small small_ small large large large
green green green green green green green green green green green green
snake cactus bottle snake cactus bottle snakes cacti bottles snakes cacti bottles

one one one one one one two two two two two two

small small small large large large small small small large lavge large
brown brown brown brown brown brown brown brown brown brown brown brown
clock bear tree clock bear tree clocks bears trees clocks bears trees

2 !)



'Figure 7A.3. Tdsk 3, Conjunctive Concept Acquisition.

,

le one one one one one two two two two two two

small small small large large large small small small large large large
red red red red red red red red red red red red
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one one
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one one one one two two
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two two two two

small small small large large large small stall small large large large
green green green green green green green green green green green green
frog bean pen dinosaul lettuce chalk-

board.

fish leaves spoons alli-
gators

Christ-
mas
trees

cars

..

one one one one one one, two two two two two two

small small small large large large small small mall large large large
brown brown brown brown brown brown brown brown brown. -brown brown brown
penny worm pine

cone
cannon kangaroo potato combs chip-

munks
acorns tractors Indians 'coconuts
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For this purpose, an attempt has been made to make the tasks
isomorphic from the point of view of task structure. Each task

encompasses the same number of attributes and object exemplars which

are matrixed on the boards. We can set up a one-to-one correspondence
of attributes and values as follows:

Task 1 Task 2

Circle 4---4 Plant Life

Square ,---4 Animal Life

Task 3

Plant Life

Animal Life

Triangle Inanimate Object Inanimate Object

The attributes of color, number, and size correspond across all three

tasks.

The correspondence of relevant attributes and attrioute values
is utilized throughout the administration of the tasks. Cards which
exemplify isomorphic combinations of attribute values occupy the same
relative positions on the problem boards. Thus "one small red cherry"

and "one small red circle" are both situated in the upper left-hand
corner. Likewise, the goal concepts to be attained are assigned

isomorphically. That is, if "large squares" is the concept to be
attained for a particular subject in Task 1, "large animals" would
be the concept to be attained by corresponding subjects in Tasks 2
or 3. In addition, the start card (i.e., the initial positive instance
of the concept which is shown to the subject) is assigned in each task
according to the same isomorphism.

Task directions for the three problzms are essentially the same.
They differ only where the subject is asked to point to examples of
a specific conjunctive concept on the board. In this case, however,

care is taken not to include in the example any of the dimensions

which are employed as goal concepts. A transcript of the task direc-
tions is included as an appendix to this chapter.

State-Space Analysis

Defining an isomorphism of structure through a one-to-one corres-
pondence of the attributes, the attribute values, and the object
exemplars, seems to be a reasonable approach in the case of concept
acquisition tasks. In tasks where the number of moves is not too
large, it is often useful to consider the task state-space, rzcording
a subject's moves as a path through the state-space (see Chapter TV).
Isomorphic tasks may then be defined as tasks whose states may be
placed in one-to-one correspondence so as to preserve the structure
of the permitted moves; or, alternatively, whose moves may be placed
in one-to-one correspondence so as to establish a one-to-one corres-
pondence of the states. Let us see how this definition applies to

the present situation.
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In the concept acquisition tasks, a move may be defined to be

either (1) a choice of a card by a subject, together with the dis-
closure by the experimenter of whether or not the card exemplifies

the goal concept; or (2) a hypothesis by the subject, together with

the disclosure by the experimenter of whether or not the hypothesis

is the correct goal concept. A state may then be defined as a finite

sequence of moves; the goal state is a sequence terminating in the

hypothesis of the goal concept. It is clear that there is a one-to-
one correspondence between card choices in Task 1, Task 2, and Task 3.

However, there is not a strict one-to-one correspondence between the

hypotheses which are possible in Tasks 1, 2. and 3. Since Tasks 2

and 3 contain increasingly wide varieties of object exemplars, there

are attributes in these tasks, irrelevant to the goal concept, which

are not present in Task 1; and these irrelevant attributes suggest
possible hypotheses which would not be present for Task 1. There is,

of course, a one-to-one correspondence across Tasks 1, 2, and 3 of

the hypotheses incorporating only the attributes across which the

tasks have been "matrixed." In the language of Chapter IV, there is

a state-space homomorphism from Task 1 to Task 2 and from Task 1 to

Task 3, and there are subspaces of Tasks 2 and 3 for which the homo-

morphism defines an isomorphism.

Analysis and Scoring of Strategies

Another method of describing problem structure discussed in oc'

Chapter Iv is by means of the strategies which may be employed in %

problem solving. In that chapter, Goldin has characterized a strategy

as a rule which associates to each state of the problem a specified

subset of the set of possible moves. Thus an algorithm is a strategy

in which each specified subset contains no more than one move, and the

sequence of moves leads to the goal state in finitely many steps.

For concept acquisition tasks such as Task 1 in the present study,

researchers have been interested in characterizing the strategies used

by subjects by means of the sequences of moves made. Four ideal

strategies observed by Bruner, Goodnow, and Austin are defined as

follows:

In the simultaneous scanning strategy, the subject simultaneously

considers all possible concepts which could serve as outcomes, and at

each stage makes that card choice which logically eliminates the most

possible concepts.

In successive scanning, the subject attempts to discover
several positive instances of the concept involved, observes particu-
lar attribute values which these instances have in common, and

then hypothesizes that these attribute values define the

concept.

In conservativefocusing, the subject considers the particular

attributes of a single positive instance of the concept. The subject
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values of all of the attributes except for
order to determine whether that attribute
for the concept.

Focus gambling involves basically the same procedure as conserv-
ative focusing, except that two or more attributes are varied
simultaneously in the hope of eliminating two or more possible
attributes as defining attributes of the concept in one trial.

Due to the isomorphism acroiss Tasks 1, 2, and 3, each of the four
ideal strategies has identical application to the three tasks. In

order to exemplify more fully these strategies, let us suppose that a .

hyPothetical subject is attempting to solve Task 1. Two of the attri-
butes are bi-valued (number and size), while the other two attributes
are tri-valued (shape and color), as in Figure 7A.1.

Suppose that the goal concept is "all cards containing one
triangle" and the initial positive instance shown to the subject
is the card in the lower left-hand corner of the problem board, one
small brown triangle.

The subject at the outset reasons: "I see that the initial card
contains something small and broWn. Maybe the concept is all small
brown things. To see if I'm right, I'll choose the card right next
to it, since that's small and brown, too." The subject chooses one
small brown square and receives a negative response from the experi-
menter.

This would be classified as a successive scanning choice. The
subject made a tentative hypothesis as to the identity of the concept
and chose a card containing the values of the hypothesis in order to
attempt to verify the hypothesis.

The subject then reasons: "I see that one thing which is changing
is the sliape of the objects on the cards. Therefore, I'll choose a
card which is exactly like the one given except for the shape. If I

get a no, then shape is involved. If I get a yes, then shape is not
involved." The subject chooses one small brown circle and receives a
negative response.

This choice would be classified as a conservative focusing choice.
The subject held constant all values of all attributes except for one,
which was varied in order to test for inclusion in the concept.

The subject then reasons: "I know from my last choice that trian-
le is included in the concept. Two other things which are changing

on ehe cards are the color of the objects and also the size of the
objects. I will try to test these attributes for inclusion in the
concept by choosing a card which differs from the first card by these
two attributes only. A yes would mean that neither color nor size
is included, while a no would mean that at least one of color or

size is included." The subject chooses one large green triangle
and receives a positive response.
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This choice would be classified as a focus gambling choice
(where the gamble paid off). Two attributes were varied while all

others were held constant. A yes response indicated that changing -"

the value of these attributes did not affect the concept status, so
that neither color nor size was included.

The subject now reasons: "I know at this point that shape is
included and-that neither color ncr size is included. Therefore,

there are two possible hypotheses which remain for the concept.
These are 'all cards with triangles' and 'all cards with one triangle.'

I will therefore make a card choice which will eliminate one of these

outcomes. Any card with two triangles will satisfy the requirement,
since a yes eliminates the concept 'one triangle' and a no eliminates

the concept 'triangles'." The subject chooses two, large, red trian-
gles and receives a negative response.

This would be classified as a simultaneous scanning choice,
since the subject simultaneously considered all possible outcomes and

chose a card which would eliminate the most possible outcomes at that
stage.

JR

With this information, the subject can successfully guess that

the goal concept is "all cards with one triangle." While this "inner
protocol" is highly fictionalized, it should give some flavor for the
qualitative distinctions which are intended by the definitions of
these ideal strategies. It should also illustrate that the same card
choice might exemplify different strategies, depending on the line of

reasoning being followed.

However, there are problems with the measurement of these.strate-
gies, which we now mention. We shall discuss four methods of measuring

strategy use: (a) protocol analysis, (b) behavioral measures, (c)
retrospective accounts, and (d) structured questions.

In initially developing these strategies,,Bruner and his asso-
ciates essentially employed a technique of "protocol analysis," in
which the experimenter may conduct a dialogue with the subject during
problem solving, but tries to limit his or her own remarks to those
designed to elicit responses from the subject describing the approach
to the problem. After the session is completed, the experimenter then
analyzes the subject's protocol in an attempt to discern methods of
approach, attempting to arrive at a description of the strategy used.
This analysis might take the form of a comparison with "ideal" methods

of problem solution. Such an analysis is particularly useful if one
is at the beginning stages of experimentation, and is trying to define
the ideal strategies which may be employed on a set of related tasks.
One disadvantage of this technique is that the risk of giving hints
is relatively hi h.

One way to preclude the interference of verbal discourse with
problem solving is simply to prohibit it; that is, to rely totally
on nonverbal behavioral measures of strategy usage. This technique
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has been widely employed in the case of selection strategies in con-

cept attainment. For example, the focusing index of Laughlin (1965)
defines behavioral rules for scoring the focusing strategy. This

technique has several advantages: it produces reliable measures

since these are objectively determined, and verbal intercourse does

not vary over different subjects. However, these strategy scores
must satisfy several criteria if they are to be valid.

Strategy scores are based on the concept of partitioning the

set of possible moves into mutually disjoint subsets, and associating

each subset with a particular strategy. However, in the case of the

focusing and scanning strategies in concept attainment, some of the
early behavioral definitions of these strategies in terms of card

choices and hypotheses were found to be imprecise in that certain
choices could be associated with either focusing or scanning by these

definitions. Thus the definitions had to be modified to eliminate
these ambiguities.

In obtaining mutually exclusive categories of moves, however,

the researcher must also be careful to preserve the validity of the,

definitions. In other words, it must be arguable that the
"behavioral strategies" measure the ways in which subjects approach

the problem.

In addition, it is important to realize that a purely behavioral

approach to the measurement of strategies makes inferences about
strategies from what the subject does, and not from what was intended.

In the case of our concept attainment tasks,.the strategies of focus-

ing and scanning impose a heavy load on memory, and assume the under-

standing of rather complex logical inferences. The complexity of the

tasks and of the strategies involved casts doubt on the assumption
that a behavioral strategy score based only on a subject's card

choices and hypotheses can totally reflect the intended approach to
the problem.

Another technique of ascertaining a subject's intended strategy
(as opposed to the behavioral implementation of that strategy) is
through retrospective accounts. First, the subject perforuis the task

without interference. Then, at the conclusion of the task, the
experimenter asks the subject a series of detailed questions designed
to ascertain the subject's method of approach to different problem

configurations. Based on the answers to these questions, the strategy
usage is scored.

One advantage of this technique is that the original task is
unaffected by verbal discourse during problem solution. In addition,

a greater emphasis is placed on the subject's intended strategy than

on actual moves. Dienes and Jeeves (1965) and Branca and Kilpatrick
(1972) have performed experiments involving the learning of mathe-
matical group structures using the technique of retrospective accounts.
According to Branca and Kilpatrick's results, a subject's retrospective

account may not be consistent with what was intended at the time he or
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she was solving the problem. Retrospective accounts may reflect
approaches which ultimately produced success rather than those
which were unfruitful and fell by the wayside.

For the concept acquisition tasks in this study, we are interested
in how certain variables of the task embodiment (i.e., the presence of

. an abstract attribute and.the increase in object exemplar diversit)i)

affect strategy selection and efficiency. For this purpose, we choose

to employ the technique of structured questions.

In utilizing this technique, the first step, as with behavioral
strategy scores, is to develop definitions of the ideal problem-
solving strategies. The difference, however, is that these defini-
tions now depend to some extent on things the subject says about what
is done, in addition to his or her actions in solving the problem.
After these definitions are formulated, the experimenter develops a
short series of questions aimed at eliciting the information necessary
for strategy classification according to these definitions. These

questions are asked of the subject after each move or play

in the task and should constitute almost the entirety of the experi-
menter's dialogue with the subject.

For our concept acquisition instruments, the structured ques-
tions technique is employed by first setting up mutually exclusive
definitions of "intended" focusing and "intended" scanning as
follows:

Intended focusing - The subject expresses concern with one or
more attributes, and changes the values in his or her card choice of

one or more of these attributes from its value on the original card.

Intended scanning - The subject either (1) expresses no hypothe-
sis and chooses a card or (2) expresses a partial hypothesis and holds

constant in his or her card choice all of the attributes involved in
that hypothesis, making reference in the response to none bf the
changed attributes.

For experimental purposes, we define an intended focusing index
to be the number of intended focusing choices divided by the total
number of choices, and likewise an intended scanning index.

These definitions are theoretically mutually.exclusive. Either
a subject expresses a reason for a card choice or xioes not. If the

subject does state a reason, either reference is,made to changed
attributes, or no such reference is made. However, in actual prac-
tice, the two indices do not necessarily add exactly to 1, due to
the occasional occurrence of a completely different type of justifi-
cation being offered by the subject. In such cases, the response
counts in the denominator, but not in the numerator of either index.

Since our purpose in these tasks is essentially to find out why
the subject made each particular choice, a short series of questions

30 7
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which is designed to elicit this information is asked of each
subject. Immediately after each choice, the experimenter
asks the subject, "Why did you choose that card?" If the

subject states a clear reason for the choice, no further questions

are asked. If a clear reason is not stated, the experimenter asks,
"Did you have any particular concept in mind when you made that

choice?" If the subject answers "no," nothing else is said. If

the subject answers "yes," the experimenter asks, "What was your
concept?" It is important to note that these questions, are asked
in the same way of all, subjects after every card choice. In addition,

a series of allowable comments from the experimenter concerning the

rules of the game, etc., was developed. These questions and comments
constitute the experimenter's entire portion of the dialogue'during
the task, and are given under the same conditions to all subjects.
Experimenters are strongly discouraged from making any other comments
during the administration of the task. By structuring questions and
comments in this way, the chances of hints are minimized, and what

hints may be given are given in a similarmanner to all subjects.

It should be pointed out that the asking of this series of ques-
tions doec change the task from one in which no dialogue is allowed.
In effect, the mere asking of the questions may cause subjects to view
the tasks differently than if no questions had been asked. However,

an important feature of the structured questioning technique is that
exactly the same series of questions is employed in the same order for
all subjects on all three versions of the task. Thus for the three
concept acquisition tasks, the structural isomorphism is preserved.

The use of "intended focusing" and "intended scanning" indexes in
measuring strategy use avoids another pitfall of the behavioral
"strategy scores" used by Bruner, Laughlin, and others. As these
strategy scores are frequently defined in the literature, card choices

which are "focus" choices are often those which are non-redundant in a
logical sense and yield new information; while card choices which are
If scanning" choices are often those which are repetitive or yield no

new information. (See Laughlin, 1965, for one such definition of
"focusing strategy.") Given these properties which hold by definition
of the choice categories, the reported findings that focusing is the
more efficient strategy must be viewed with great reservationsurely
this is more a consequence of the Zogical structure of the def?:ni-
tions, than of ,the psychological nature of the focusing and scanning

strategies. "Intended" focusing and scanning, on the other hand, are
defined with reference to subjects' statements about the reasons for
their choices; there is no a priori association of focusing with effi-
ciency or scanning with inefficiency.

In the study itself, we shall observe how ne task embodiment
influences the choice of strategy, and how the choice of strategy
influences the efficiency of solution.
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3. Summary of Findings
41.

The Hotelling-Lawley MANOVA Test was highly significant for over-
all group differences (134.0001), but vas not significant for either
experimenter differences or experimenter x group interactions. The

latter result provides an important cross-check on inter-experimenter
reliability, in view of the "structured questions" nature of the task
and the extensive experimenter training,which took place in prepara-
tion for the structured questions format. Ail experimenter groups
are pooled in reporting the data below.

Table 7A.1 lists the means by group and by task on each of the
dependent variables.

Table 7A.2 shows the main effects and differences between groups
on dependent variables from the first problem. These effects were
calculated using univariate analysia,of variance and Duncan's Multi-
ple Range Test.

From Tables 7A.1 and 7A.2, it can be seen that with respect to
overall task difficulty, the introduction of the more abstract attri-
bute and the increase in object exemplar diversity from Task 1
to Task 2 had a detrimental effect on performance, whereas the further
increase in object exemplar diversity from Task 2 to Task 3 did not
significantly worsen performance from Task 2 (although the three task
difficulty variables of the number of choices to solution, the time
to solution, and the percentage of subjects solving the problem)all
showed slightly but not significantly greater difficulty for Task
3 than for Task 2).

With regard to the strategies for problem solution, it can be
seen that each change in the task embodiment significantly affected
subjects' intended strategies. Subjects intended to scan the most
and focus the least on Task 3; they scanned the least and focused the
most on Task 1; and they scanned and focused to an intermediate degree
on Task 2.

In addition to the above results, some interesting effects of
the change in problem embodiments on transfer of learning from the
first task to the second were observed. For exhmp1e, in comparing
groups A and C, overall performance on the second problem was facili-
tated only when the more difficult problem was presented first. In

other words, group A significantly outperformed group C on Task 1,
but group C did not significantly outperform group A on Task 3, even
though group C subjects had the prior experience of Task 1. This
result is consistent with the "deep end" hypothesis of Dienes and
Jeeves (1970), discussed in Chapter IV.

In addition, the intended strategies which predominated on the
first problem were carried ovL: to increased usage on the second
problem. For example, group A scanned more and focused less on

cP9
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Table 7A.1 Means by c;roup and by Task for Dependent Variables

Dependent Variable A

Task 3
First

F
Number of Choices to Solution 14.47

P

r Time to Solution 16.32

o
Solved - Not Solved .36

s b

t I Intended Focusing Index .06

Intended Scanning Index ,87

S P Number of Choices to Solution

e r Time to Solution
c o
o b Solved - Not Solved

n I Intended Focusing Index
d e
m Intended Scanning Index

310

Group

Task 2
First

Task 1
Second

13.75 8.67

13.26 7.18

.56 .97

.20 .39

.75 .61

Task 1
Second

Task 1
Second

Task 3
Second

5.28 6.97 14.53

3.40 4.86 13.60

1.00 .97 .53

.15 .27 .19

.84 .73 .78

4
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Table 7A.2. Main Effects and Differences Among Groups for the First Problem

Dependent Variable SS df . MS

.Number of Choices to 720.80 2 360.40
Solution

Time to Solution 155794.89 2 77893.44

Solved - Not Solved 7.02 2 3.51

Intended Focusing 19613.63 2 9806.82

Index

Intended Scanning 12217.35 2 6108.68
Index

I. P.
Differences

8.57 .0004 Task I<
Task 2:=
Task 3

18.08 .0001 Task l<
Task 2 =
Task 3

19.06 .0001 Task 1>
Task 21E
Task 3

23.91 .0001 Task 1 >
Task 2>
Task 3

13.07 .0001 Task 14C
Task 24C
Task 3



-293-

Task I than did group C; group C focused more and scanned less on
Task 3 than did group A. Also, on Tasks 1 and 3 combined, group A
scanned more and focused less than did group C.

Table 7A.3 shows Pearson product-moment correlations between
measures of overall performance and measures of intended strategy
usage by task groups on the first problem. It can be seen from the
table that these correlations are all quite low. In fact, none of
the correlations, even for Task 1 (which employed all perceptual
attributes), was significant at the .05 level. Thus the presumed
superior efficiency of the focusing strategy was not substantiated
at the level of intended strategy usage for any of the tasks.

The aforementioned results are illustrative of some of the
interesting effects which can be observed through the variation of
task structure and embodiments. In this study, care was taken on
every level to preserve not only the structural isomorphism of the
three tasks, but also to hold constant variables of embodiment which
were not under consideration. The technique of asking subjects a
structured series of questions after each card choice was used.
This series of questions assessed process variables relating to the
intended strategy, while at the same time preserving the isomorphic
nature of the three tasks.

It can be concluded with a high degree of confidence that varia-
tions in the embodiment of a concept acquisition task may not only
affect the overall difficulty of the task, but also induce subjects
to employ different strategies for solution,.even though the struc-
ture of the task remains unchanged. This-1s not to say that problem-
solving strategies are totally task-specitlic. However, given that
several different strategies can be emplo)ed on all problems having
a certain structure, slight variations in the problem embodiment may
induce subjects to solve the task using one strategy rather than
another.

The variations in problem embodiment introduced in Tasks 2 and
3 have the effect of transforming these tasks into more "real-life"
problem-solving situat?ons. The results indicate that under these
conditions, neither focusing nor scanning strategy usage was signifi-
cantly associated with superior performance, but that the vast majority
of subjects preferred to employ a scanning strategy to discern the c a-

cept. These results call into question some of the inferences regard-
ing concept acquisition made by Bruner and his followers. The results
support the assertion that the focusing strategy cannot be assumed to
be the better strategy to employ in the attainment of "real-life"
concepts. In cases where the possibly relevant attributes of the
concept are unknown at the outset and where the diversity of examples
of the concept is great, it may be preferable to adopt a scanning
strategy.

AS
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Table 7A.3. Pearson Product-Moment'correlations Between Measures of
Overall Performance and Measures of rntended Strategy

Usage by Tdsk Groups on the First PY,oblem

Solved -
Number of
Choices to Time to

Task 1 Not Solved Solution Solution

Intended Focusing Index -.20167 .17445 .14228

Intended Scanning Index -.20091 -.18093 -.15403

Task 2

Intended Focusing Index .04363 -.28902 -.01605

Intended Scanning Index .16342 .23752 -.16975

Task 3

Intended Focusing Index .31059 .07415 .01420

Intended Scanning .11118 -.26416 -.30660
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.Appendix:

Directions Given to Sub ects Prior to Task Administration

First Problem

Before we begin the experiment, I would like to ask you if you
are familiar with the name Jerome Brun-45 Have you ever heard of the

phrase I'concept attainment"?

This experiment contains two problems for you to solve. Your
job in the problems is to find what is called a conjunctive concept.
By a conjunctive concept, I mean a way_of grouping things in terms
of some shared characteristic or characteristics. For example, look
at the pictures I am placing before you. If I were to ask you to
name a property shared by pictures 1, 2, 3, and 4, you might say
"people." People is an example of a conjunctive concept. If I were

to ask you to name some characteristics shaied by pictures 1 and 2,

you might say "young people." young and people are two characteris-
tics which are shared by pictures 1 and 2, so young people is a
conjunctive concept which is shown on pictures 1 and 2. However,

picture 5 is not an example of the conjunctive concept yelina_geo_El_
since there is no young person shown on picture 5. Do you have any
questiohs on what a conjunctive concept is?

Can you give me an example of another conjunctive concept?

Would things be a conjunctive concept?

Would all things that are gray be a conjunctive concept?

Would all things that are both old and _gray be a conjunctive
concept?

Would all things that are either old or gray be a conjunctive
concept?

Would all thinv that are old, gray, and wrinklee e a con-

junctive concept?

Now in the first problem you are going to be finding a conjunctive
concept which is shown on some of these cards but not on others. As

you can see, I have typed the names of the objects \in the lower right-
hand corner to help you identify them, but the labels have nothing to
do with the problem. Just for practice, give you a sample con-
junctive concept, and you show me all cards which are examples of the
concept. How about-all cards with objects which are red and make noise
(all cards with ob acts that are red and have corners)?

Now we are ready to start the problem. I am thinking of a certain
conjunctive concept. The concept is shown on some of the cards before
you, and on others it is not. It is your job to describe-which cards

illustrate the'concept. I will start by showing you a card which is an
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example of my concept. For example, if I were thinking of all cards
with objects which are red and make noise (all cards with objects
that are red and have corners), I might show you this card. Your
job is to choose cards one by one to test whether they are examples
of the concept I am rhinking of, and after.each choice, I will tell
you whether or not the card you have chosen is an example of my

concept. When you think you know the concept, you can make a guess,
and I will tell you whether you are right or wrong. You can make a
guess after any choice, but you can't make more than one guess after

any particular choice without choosing another card for testing.

Also, when you make a guess, pllase say something like, "I think
it's all cards which..." and then.say the concept.

The problem is solved when you have correctly described the
cards which illustrate the concept. Do you have any questions?

Try to arrive at the concept as efficiently as possible. As

you go along, I'd like you to thinkoutloud and tell me why you are
choosing each particular card. Are you ready to begin? Here is an
example of the concept I am thinking of.

.1

Second Problem

In the second problem, the rules will
problem one except that we will be using a
Before we begin, do you have any questions
game?

be exactly the same as in
different set of cards.
as to the rules of the

Here is an Example of the concept I am thinking of.
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Structure Variables in Problem-Solving Research

B.

Classifying Algebra Problems According to the Complexity of
Their Mathematical Representations

by

Harold C. Days
Fort Valley State College
Fort Valley, Georgia

1. Description of the Study

This section presents a scheme which can be used to classify a
variety of algebraic problems according to the complexity of their

structure. The particular scheme is designed to classify problems
which can be solved using one or more linear equations. Although
problems requiring the use of quadratic, cubic, or other equations
were not considered in the,development, a few minor modifications of
the classification scheme will make it applicable to such problems

as well.

The procedure is based entirely on the mathematical representa-
tion obtained by translating the problem statement into symbols (i.e.,
on the algebraic structure of the problem). Although in this study it

is used to place problems into two categories (simple structure or
complex structure), it can easily be adapted to a more detailed class-

ification.

The purpose of the study was to examine the effects of problem
complexity, together with the cognitive level of the subjects, on the
processes used in solving verbal problems (Days, 1977). Two eighth-
grade general mathematics classes were randomly selected from each of
three junior high schools. Sheehan's modified version of the Longeot
Test was administered to each class, in order to classify the students
as concrete operational or formal operational .(Longeot, 1964; Sheehan,

1970). Ten subjects per, school were then randomly selected from each
of the two cognitive groups; each of these 60 subjects was scheduled
for a two-hour interview,

in tile interview, the student was asked to solve ten word prob-
lems while "thinking aloud." Two of these problems served as practice
problems and eight as experimental problems. Four of the experimental
problems were defined as having simple structures and four were defined
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as having complex structures. The.interviews were audiotape-recorded,
and a written record was also kept of selected responses. The proto-.

cols obtained in the interviews were used as the basis for determ4ling
the processes employed by the subjects.

Coding of Protocols

A modified version of the coding system devised by Kilpatrick
(1967) was used to code the tape-recorded protocols. The checklist
variables were included on the coding form under the following eight
categories:

(1) Understanding Processes -- (a) rereads, (b) restates,
(c) separates.

(2) Representational Processes -- (d) performs exploratory
manipulations, (e) draws a diagram, (f) uses mnemonic"
notation.

(3) Recall Processes -- (g) recalls related problems,. (h)
recalls related concepts, (i) uses method or results of

related problem.

(4) Production Process$ (j) reasons deductively, (k) uses
successive approximations, (1) estinates.

(5) Evaluation Processes -- (m) checks manipulations, (n)
checks conditions, (o) checks by retracing steps.

(6) Comments About Solution -- questions uniqueness or exis-
tence of solution, questions relevance of information,
says he or she cannot solve problem.

(7) Executive Error -- makes counting or computational error
while solving the problem.

(8) Strategies -- (i) uses deductive algorithmic approach
(sUbject uses reasoning and an algorithm or a sequence
of algorithms to obtain solution), (ii) uses systematic
trial-and-error approach (trial-and-error in which succes-
sive trials are modified on the basis of former trials and
trial-and-error in which some type of system is used to
generate the numbers tried),and (iii) uses random trial-and-
errypproach (trial-and-errbr which is not systematic).

One coding form was completed for each problem. Only explicit

behavior was coded. The checklist variables were recorded (with the
ex6eption of executive error and strategy variables) at the first
observance of the process in a given solution attempt. The sequence
of processes was coded at the bottom of the checklist. This sequence
included the total number of times each process was used and the order

3r7
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in which the processes occurred. The sequence of the solution pro-
cesses was used to classify the solution attempt with respect to the

"strategy" variable. Further data collected included the number of
executive errors, the number of structural errors, and the total time
for each problem's solution.

Scoring

Two process scores were computed for each student for each of
the 15 processes (a) - (o) listed above,which were chosen for analysis.
Two strategy scores for each of the three strategies (i) - (iii)
listed above were also computed for each student. A score
was assigned to a given process on the simple structure problems by
counting the number of simple structure problems (0-4) on which the
student was observed using the process. Similarly a student's score
for a given process on the complex structure problems was the number
of complex structure problems (0-4) on which the student was observed
using the process. For example, a "draws-a-diagram" score of 3 on the
complex structure problems implies that the subject drew a diagram in
solving three of the four complex structure problems. The scores for
n systematic trial-and-error," "random trial-and-error," and "deductive
algorithmic" strategies were assigned in a similar manner.

The range score for each problem set was a measure of the variety

of processes used on the set. The range score was obtained by count-
ing the number of different processes used to solve the problems in
the given problem set. For example, a range-score of 6 on the simple
structure problems implied that six different processes were used
while attempting to solve the four simple structure problems. The

(1) understanding, (2) representational, (3) recall, (4) production,
and (5) evaluation scores were obtained by summing the process scores
which fell under the respective categories. For example, the "under-
standing" score was obtained by summing the scores for "rereads,"
n restates," and "separates.

The experimental design was a 2x2 factorial design with repeated
measures on problem structure. The factors were (A) cognitive level
(concrete or formal) and (B) problem structure (simple or complex).
Analysis of variance was used to analyze those scores which satisfied
the ANOVA assumptions, and Wilson's two-way analysis of variance based
on medians was used to analyze those scores which did not satisfy the

ANOVA assumptions (Wilson, 1956).

Before summarizing the findings, the classification scheme for
problem complexity, used to establish factor (B) in the study, will

be described in detail.
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2. Definitions

Mathematical Representation of the Problem Statement

The mathematical representation of a problem statement was con-
sidered to consist of symbols representing known and unknown quanti-
ties, mathematical sentelices involving these symbols, and the
mathematical operations which were explicit in the mathematical
sentences. A whole-number coefficient of a variable was considered
to indicate the operation of multiplication, while a fractional or
decimal coefficient was considered to indicate the operation of
division. The mathematical sentences describe both the explicit
and implicit relations found in the statement of the problem.

For example, consider the following problem:

7B.1 Together Tom and John have 4 pennies. Tom has
twice as many pennies as John. How many pennies
does each boy have?

A mathematical representation of this problem can be.written as

T + J = 24 and T = 2J. The mathematical representation consists of
four different symbols, with two of them representing variables.
The two variables are the number of pennies Tom has and the number
of pennies John has. The mathematical representation'also contains
the operations of addition and of multiplication, but it does not
contain any combination of the two operations. The symbols used in
writing the mathematical representation of a problem are not unique.
The above representation could have been written as x + y = 24 and

y = 2x just as well.

It should be pointed out that there may be more than one mathe-
matical representation of some problems. However, in such cases
either representation should give rise to the same classification
of the problem. Consider the following problem:

7B.2 There are some rabbits and some cages. When one
rabbit is put into each cage, one rabbit will have
no cage. Wheri two rabbits are put into each cage
there are two empty gages. How many rabbits and
how many cages are there?

One possible mathematical representation of the problem is: R C

+ 1 and 1/211 C - 2, Another possible mathematical representation of
the problem is: C = R - 1 and C = 1/2R + 2. However, in both represen-
tations of the problem the numbers of variables and symbols are the
same, and the operations involved are the same. Consequently, the use
of either representation of the problem will give rise to the same

classification. Thus, although there may be more than one mathematical

3 9
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representation of the same problem, for classification purposes the
mathematical representations of a problem can be considered to be
equivalent.

Other Terms and EXpressions

Other terms and expressions important to the problem classifica-
tion scheme were defined as follows:

1. Variable. A variable was defined as a symbol that repre-
sented an unknown quantity.

2. An EXpression Based on Explicitly Stated Relationships. An
expression is said to be based on explicitly stated relation-
ships if that expression can be obtained by a direct trans-
lation of the verbal statement of the problem into a
mathematical statement of the problem.

3. An EXpression Based on Implicit Relationships. An expression
is said to be based on implicit relationships if (a) the
expression is based on relationships deduced from the infor-
mation in the problem statement and (b) the expressiun cannot
be obtained by a direct translation of the problem statement.

4. Transformation. A transformation was defined as an applica-
tion of one of the following nroperties of real numbers: (a)

the distributive property, (b) the addition property of
equality, (c) the subtraction property of.equality, (d) the
multiplication property of equality, (e) the division property
of equality, or (f) the substitution property of equality.
Substitution was counted as a transformation only if an
algebraic expression was substituted for a symbol. Conse-
quently, substitution of a number for a variable was not
counted as a transformation. The application of one of the
order axioms was also included as a transformation. Due to
the high frequency with which the associative and commutative
properties are used in solving most problems, the application
of these properties in the solution of a pioblem was not
dounted as a transformation.

5. Conversion. Conversion refers to changing one unit of measure-
ment into another unit of measurement; for example, changing
feet to inches, dollars to cents, or decimals to fractions.

3. The Classification Scheme

Simple St,ructure

A problem was said to have a "simple structure" tf at least fourof
the following statements about the mathematical representation of the
problem statement were true:

8ce
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1. The mathematical representation contained at most four
different siimbols that represented either numbers of
variables (i.e., the cardinal number of the set of
numerals and letters in the mathematical representation
was 5. 4).

2. The mathematical representation of the problem statement
contained only one variable.

3. The value(s) of the variable(s) in the mathematical repre7
sentation could be obtained by substituting the given data
into an expression that was based solely on explicitly
stated relationships, and then performing the operations
indicated by the.expressions.

4. The mathematical representation of the problem statement
could be written and the equations involved in the repre-
sentation solved without any conversions.

5. The only operations or combinations of operations that were
part of the mathematical representation were addition, multi-
plication (by a whole number), subtraction, or addition-
subtraction. (The representation 2a + b = c implies a
combination of multiplication and addition, whereas the
representationa+b+c=dimplies only the one operation
of addition.)

6. The portion of the mathematical representation that was
based on a direct translation of the problem statement
contained (a) one system of two or more linear equations
in two variables and (b) one of these equations expressed
a variable in terms of the other variables or it expressed
one of the variables in terms of known quantities.

7. The minimum number of transformations necessary to reach a
correct numerical solution to the number sentence in the
mathematical representation of the problem statement was
less than four. If the mathematical representation con-
tained more than one linear equation, then the count of
transformations was based on the substitution method of
solution. (Consider the two linear equations ax + by = c,
y = dx; it takes three transformations to solve thiystem
of equation. First dx is substituted for y; then the dis-
tributive property is applied to obtain (a + bd)x = c; and
finally, the division property of equality is used to get

x =
a + bd

Complex Structure

A problem was said to have a "complex structure" if at least five
of the following statements about the mathematical representation of
the problem were true:
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1. The mathematical representation contained at least five
different symbols that represented either numbers or
variables.

2. The mathematical representation contained at least three
variables (unknowns).

3. The value(s) of the variable(s) in the mathematical repre-
sentation could not be obtained by evaluating an expression
that was based solely on explicitly stated relationships.

4. At least one conversion was necessary in order to write or
solve the number sentences in the mathematical representa-
tion of the problem statement.

5. The mathematical representation contained at least one of
the following combinations of operations: (a) multiplication-

addition, (b) multiplication-subtraction, (c) division-
multiplication, (d) division-addition, or (e) division-
subtraction.

6. The mathematical representation contained a system of two
or more linear equations in two or more variables. The

portion of the mathematical representation that was based
on a direct translation of the problem statement into
mathematical sentences did not contain an equation which
expressed one variable in terms of the other, nor did it
contain an expression of one variable in terms of known
quantities.

7. The minimum number of transformations necessary to reach a
correct numerical solution o the number sentences in the
mathematical representation` greater than four.

Problems which did not satisfy eith r of the above criteria were
classified as neither simple nor compl x; these problems have struc-
tures intermediate between simple and omplex.

The mathematical representation of the problem statement was
used solely for the purpose of classifying the problem as simple,
intermediate, or complex. The subject was not necessarily aware of
the underlying mathematical representation of the problems, nor
necessarily expected to use the representation to obtain the solution.

To sum up, there are three steps required in the use of the above
classification scheme. First, a mathematical representation for each
problem must be written. Second, all equations or mathematical sen-
tences should be simplified and solved. Finally, the properties in
each set should be checked to determine if a given problem should be
defined as having a simple, intermediate, or complex structure.
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Reliability of the Classification Scheme

To check ihe reliability of the classification scheme, the author
sent a set of 13 randomly selected verbal algebra problems, together

with the problem classification definitions, to 13 mathematics educa-

tors at various universities. The respondents were instructed to use
the definitions to classify each problem as having a simple structure,
a complex structure, or neither. Of the 13 problem sets mailed, 10
were returned along with the classifications reached. Each respondent
was considered as a judge, and analysis of variance was used to esti-

mate the reliability of the problem classification procedure (Winer,

1962, p. 283).

For a given problem each judge assigned a "1" for a problem if
it was classified as having a "simple structure," a "3" if it was
classified as having a "complex structure," and a "2" if it was
classified as "neither." These numbers were then used to compute
the reliability of the classification procedure. The reliability
of the mean of the ten judges was .94 and the reliability of a single
judge was .63. Five of the ten judges were randomly chosen for a
second analysia. The reliability of the mean of the five judges was
.95 and the reliability of a single judge was .79. These statements
mean that if the average of the numbers (rounded to the nearest whole
number) assigned to a problem by the five judges was used to classify
the problem, then the reliability of the classification was .95. But

if the score of only one judge was used, the reliability was .79.
Since the decisions of all judges were based on the problem classifi-
cation definition, it was concluded that the-procedure used to
classify the problems was a reliable procedure.

Examples

To illustrate how problems can be classified according to com-
plexity of structure, the above classification procedure is used to
classify the following four problems into one of the three categories:
(a) simple structure, (b) complex structure, or (c) neither.

7E3.2. There are some rabbits and cages. When one rabbit
is put into each cage, one rabbit will have no cage.
When two rabbits are put into each cage there are
too empty cages. How many rabbits and how many
cages are there?

Representation

R = number of rabbits
C = number of cages
R = C+1 (implicit in statement of problem)
1/2R= C - 2 (implicit in statement of problem)



VC-11.1) - 2 (substitution) Transformation 1
Solution to

1/2C+11 = C - 2 (distributive) Transformation 2
Equations in

C- 5/2 (addition property) Transformation 3
Representation

-1/2C 5/2 (addition property) Transformation 4
C=5 (multiplication property) Transformation 5

78.3 A cow and pig together cost 56 dollars. The cow cost
30 dollars more than the pig. How much does each
animal cost?

Representation

Solution to
Equations in
Representation

C = cost of cow (unknown)
P = cost of pig (unknown)
C+P = 56 (explicitly stated relation)
Cu, P + 30 (explicitly stated relation)

a..

1(P+30)+ PI: 56 (substitution) Transformation 1
2P + 30 56 (combining like terms)
2P 26 (addition property of equality) Transformation 2
P 13 (division property of equality) Transformation 3

78.4. An apple and pear together cost 20 cents. Five apples

and 10 pears cost $1.65. How much does one apple
cost? How much does one pear cost?

Representation

A = cost of one apple (unknown)
P = cost of one pear (unknown)
A + P = 20 (explicitly stated)
5A+10P= $1.65 (explicitly siated)

A + P = .20 (conversion)
A...20-P (addition property) Transformation 1

Solution to 5(.20- P) +1011.1.65 (substitution) Transformation 2
Equations in 1.00- 5P+ 10P 1.65 (distributive prop .) Transformation 3

Representation 1.00+5P = 1.65 (combining like terms)
5P .65 (addition,property) Transformation 4
P 3. .13 (division property) Transformation 5

78.5 A housewife can buy sugar for 150 a pound and coffee
for 800 a pound. If she buys the same number ofpounds
of aach and spends $5.70, how many poumls of each does
she buy?

Representation

Solution to
Equations in
Representation

S = number of pounds of sugar (unknown)
C 7. number of pounds of coffee (unknown)
C S (explicitly stated)
15cS+80cC $5.70 (implicit in problem statement)

..15S+ .80C. 5.70 (conversion)
.15S+.80S = 5.70 (substitution) Transformationl
.95S . 5.70 (combining like terms)
5.6 (division property of equality) Transformation 2
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Table 7B.1 Properties of the Mathematical Representations of the Examples

Simple Structure Properties Problems 78.2 78.3 78.4 78.5

1. Representation contains at most four
different symbols.

2. Representation contains only one
variable.

3! Value of variable(s) can be obtained
by substituting into expressions
based on explicitly stated relation-
ships.

4. No conversions necessary.

5. The only operations or combinations
of operations are: addition, multi-
plication, subtraction, or addition-
subtraction.

6. At least one variable is explicitly
11/

stated in terms of other variables
or known quantities.

7. Minimum number of transformations lf . id,
less than four.

Complex Structure Properties Problems 78.2 78.3 78.4 78.5

1. Representation contains at least
five different symbols.

2. Representation,contains at least
three variables.

3. Value of variable(s) cannot be
obtained by substituting into
expressions based on explicitly
stated relationships.

4. At least one conversion necessary.

5. The operation of division or
the combination multiplication-
addition or multiplication-subtrac-
tion is contained in the representa-
tion.

6. No variable is explicitly stated in
terms of other variables or known
quantities.

7. Minimum number of transformations
greater than four.

4 1 4

.1 4
SI 11

4

Cla si fi cati on complex simple complex neith'er
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Now let us consider Table 73.1. If the mathematical representa-
tion of a problem satisfies a given property, a check is placed in the

square which corresponds to that problem and property. Otherwise, the

square is left blank. If at least four checks fall under the simple
structure properties for a given problem, the problem is classified
as having simple structure. If at least five of the complex structure
properties are checked for a given problem, the problem is classified
as having a complex structure. All other combinations of checks are
classified as neither simple nor complex.

Note that Problem 713.3 is claSsified as having a simple structure
since five of the simple structure properties are satisfied. On the

other hand, Problems 7B.2 and 7B.4 are classified as having complex
structures since they both satisfy at least five of the complex struc-
tures properties. Since Problem 7B.5 satisfies on3tuo simple

(

structure properties and only four complex struct

:
es properties, it

is placed in the "neither" category.

4. Empirical Results of the Study

Tables 73.2 and 73.3 contain a summary of the analyses performed
on several of the process scores.and strategy scores. The analysis of
the range score reveals that both groups used a wider variety of pro-
cesses on the complex structure problems than on the simple structure
problems. In general, "understanding,-" "representational," "produc-
tion," and "evaluation" processes were used pn significantlya-more
complex structure problems than simple structure problems. While
problem structure had a significant effect on the use of "understand-
ing" and "representational" processes, cognitive level did not
significantly affect the' use of these processes.

Of the three strategies studied, "systematic trial-and-error" vas
used on significantly wore complex structure problems than simple
structure problems, while "deductive algorithmic" approaches were used
on significantly more simple structure problems than complex structure
problems.

There was a significant interaction effect for the time score
(p < .05). An analysis of the interaction revealed that the concrete
and formal subjects did not differ significantly in the amount of
time spent solving the complex structure problems (p<.1), but the
concrete-operational subjects spent significantly more time solving
the simple structure problems than did the formal-operational subjegts
(p< .05). As expected, both groups spent significantly more time
solving the complex structure problems than they did solving the
simple structure problems (p< .001).

There was a significant interaction between cognitive level and
problem structure for the use of "evaluation" processes. Concrete-
and formal-operational subjects did not differ significantly in their
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Table 7B.2. Analysis of Variance of the Range:Score, the "Understandingr
Score, the "Production" Scove and the "Evaluation" Score

Source df MS

Cognitive Level (A)

Error

Problem Structure (B)

A X E

Error

Range Score

81.11

4.50

110.08

6.28

3.82

18.03**

28.79**

1.64

1

56

1

1

56

"Understanding" Score

Cognitive Level (A) 1 .08 .02

Error 56 5.06

Problem Structure (B) 1 48.49 27.83***

A X B 1 .42 .24

Error ,15________ 1.74

"Production" Score

Cognitive Level (A) 1 147.94 60.49***

Error 56 2.43

Problem Structure (B) 1 45.94 20.95***

A X B 1 10.00 4.79*

Error 56 2.19

"Evaluation" Score

Cognitive Level (A) 1 21.55 11.36**

Error 56 1.89

Problem Structure (B) 1 37.55 21.75***

A X E 1 7.75 4.50*

Error 56 1.72

*2 < .05 **2 < .01 ***2_ < .001
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Table 78.3 Wilson's TOo-way Analysis of Variance of "Representational,"
"Recall," "Systematic Trial,and-Error" and Time Scores

Scores df

"Representational" Score

0.03

66.81**

0.52

Cognitive Level (A)

Problem Structure (B)

A X B

1

1

t,

1

"Recall" Score

Cognitive Level (A) 1 1.01

Problem Structure (B) 1 1.01

A X B

"Systematic Trial-and-Error" Score

Cognitive Level (A) 1 20.05**

Problem Structure (B) 1 13.93**

A X B 1 0,00

Time

Cognitive Level (A) 1 0.07

Problem Structure (B) 1 42.2B**

A X B 1 4.14*

< .05 **2 < .001
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use of "evaluation" processes on the simple structure problems, but
the formal-Operational subjects used "evaluation" processes on signi-
ficantly more of the complex structure problems than did the concrete-
operational subjects. Similar results were found for the "production"
score.

Finally, the formgl-operational subjects found the complex struc-
ture problems to be significantly more difficult than the simple
structure problems, while the concrete-operational subjects found the
simple structure problems to be as difficult as the complex structure
problems. This finding is supported in part by previous_research.
Jerman and Mirman (1973) found that structural (task) variables which
were good predictors of problem difficulty for subjects in grades 4

through 9 were not as good predictors of problem difficulty for
college-level subjects. Similarly, Ingle (1975) found that certain
structural (task) variables were better predictors of problem diffi-
culty for high-ability students than they were for low-ability students.

Thus, the structure variable has a significant effect on both
product variables and process variables in this study. It appears
that the classification procedure described in this chapter may be
fairly useful for studying algebra problems of varying levels of
complexity.
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VII.

Structure Variables in Problem-Solving Rsearch

C.

State-Space Representation of Problem-Solvin BehaViOr--

by

George F. Luger*
Universityof Edinburgh .
Edinburgh, Scotland

In this section, the results of two empirical studies based on
the state-space analysis of the Tower of Hanoi problem are summarized.
The utilization of the state-space to represent problem-solving
behavior has been discussed by Goldin in Chapter IV. Here our

purpose is to illustrate how empirical research based on this kind

of analysis of problem structure can be carried out.

1. Paths ThrotIgh the Tower of Hanoi State-Space

The Tower of Hanoi (TOH) problem and its state-space have been
described in Chapter IV (Problem 4.11, Figure 4.12). In the first
study, the TOH state-space is used to describe the problem-solving
behavior of subjects (Goldin and Luger, 1979; Luger, 1973, 1976).
Fifty-one college students and college-educated adults solved the
4-ring TOH problem, and their behavior was recorded as sequences of
paths through the state-space. The purpose of this study was to
investigate a set of general hypotheses proposed by Goldin and Luger
(1973, 1975), anticipating patterns which might be expected to occur
in the paths generated by problem-solvers. These hypotheses are
restated and extend,ld in Chapter IV, Section 3 of the present book;
we shall make reference to them by number as we go along.

Hypothesis 1. In order to test whether the subjects generate non-
random, goal-directed paths through the state-space, a metric is defined
on the state-space, with the distance between two states given by the
number of moves along the shoriest path between them. A goal-directed
path is defined to be one for which the distance from the goal state
is non-increasing; thus it is a path which does not "double back"
within the state-space. Subgoal-directed paths are defined analogously
for the 2-ring and 3-ring subspaces illustrated in Figure 4.12. InFigure

*Current address: Department of Computing and Information Science,
University of New Mexico, Albuquerque, New Mexico.
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Figure 7C.l Goal- andSubgoal-Directed Pc.Qs in the Toweroffianoi State-Space

(a) The Main 4-Ring State-Space t,

A goal-directed path.

goal

A path that is weakly goal-directed but
not goal-directed.

start

goal

A path that is neither goal-directed
nor weakly goal-directed.

2
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Figure 7C.1 continued

(b) The 2-Ring Subspace (* = subgoals)

(1) (2) (3) (4) (5) (6)

start start start start_ start_ _ start Six mutually

. .
. non-congruent

. . . subgoal-directed

, . . . paths. .

* * * * * * * * * *

start start

(c) The 3-Ring Subspace (* subgoals)

S

A subgoal-directed
path.

Examples of non-subgoal-
directed paths.

start start

A weakly subgoal- A non-weakly-subgoal-
directed path. directed path.



Figure 7C.2 The Exit Criterion far Subgpaytatee

A path meeting the
criterion at the
subgoal state (*)r

313

A path not meeting
14the criterion at

the subgoal state (*).
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7C.1, we have depicted goal- and subgoal-directed paths in the TOH
state-space.

Every time a subject .!Iltarts over" in solving the TOR problem, a
new "path" is said ftshbegin.. Thus a subject's problem solving con-
sists of a sequence4gLattempts corresponding to a sequence of paths
commencing with7the'iratial problem state. When a subject arrived at
the goal state, be or she was asked to solve the problem again in
fewer moves. When a subject arrived at the goal state by means of
the shortest possible path, the interview ended:

Six of the 51 subjects solved the problem on their first attempts
in the minimum number of moves. These paths are, of course, goal- and
subgoal-directed, by definition. For the remaining 45 subjects,'Table
7C.1 summarizes the frequencies of occurrence of goal- and subgoal-,
directed paths.

For the sake of interest, a path is defined to be weakly goal-
directed if it does not double back except within a 2-ring subspace
of the main TOH state-space. A path through a 3-ring subspace is
defined to be weakly subgoal-directed if it does not double back
except within a I-ring subspace. These definitions thus allow for
slight deviations from strictly goal-directed paths. Table 7C.1
also summarizes the frequencies of occurrence for weakly goal- and
subgoal-directed paths.

The frequencies of goal- and subgoal-directed paths in Table
7C.1 have been compared with those expected for randomly generated
paths under various plausible sets of constraints (Luger, 1973). Not

surprisingly, it turns out that in all cases subjects' frequencies of
goal- and subgoal-directed paths substantially exceed the frequencies
for randomly generated paths. (Under one set of constraints that is
fairly rigorous, randomly generated paths,through the 2-ring subspace
are subgoal-directed 21 times in 32, or in 65.6 percent of the cases.
Under the same set of constraints, randomly generated paths through
the 4-ring state-space are determined experimentally to be goal-
directed in approximately 9 percent of the cases. These figures
compare with subjects' frequencies of 96 percent and 77 percent
respectively.) Thns the goal- and subgasl-directedness of subjects'
paths is not automatic, but is characteristic of problem-solving
behavior for this problem.

Hypothesis 1 of Chapter IV further suggests that when a subgoal
state is entered, the subject's path leaves the state in such a manner
as to exit also from the subspace. This idea is illustrated for the
TOH problem in Figure 7C.2. A randomly generated path would be
expected to meet this criterion for exactly 50 percent of the sub-
goal states entered, assuming that reversals of single moves are
totally disallowed. In fact, subjects' paths met the criterion for
96 percent of rhe 2-ring subgoal states entered and 98 percent of
the 3-ring subgoal states, figures which seem to confirm a special
role played by these states.

434
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Table 7C. 1 Goal- caul Subgoal-Directed Paths in the Tower of Hanoi State-Space

(a) Paths Through the Main 4-Ring State-Space (exclusive of minimil solution
paths)

W N Tot. ,G/Tot. (G+W)/Tot.

Total 45 Subjects, All Trials 102 21 10 133 .77 .93

Total 45 Subjects, First Trial 33 6 6 45 .73 .87

Only

G = goal-directed; W = weakly goal-directed (but not goal-directed);
N = neither goal-directed nor weakly goal-directed

(minimal solution paths are not included in the totals)

(b) Paths Through the 2-Ring Subspaces

(1) (2) (3) (4) (5) (6) N Tot. G/Tot.

Total 45 Subjects, All Trials 563 8 29 2 53 3 27 685 .96

G = goal-directed; (1)-(6) = congruence class of goal-directed path,
see Fig. 7C.1; N = non-goal-directed

(minimal solution paths are included in these totals)

(c) Paths Through the 3-Ring Subspaces

G W N Tot. G/Tot. (G+W)/Tot.

tit

Total 45 Subjects, All Trials 286 7 28 321 .89 .91

G goal-directed; W = weakly goal-directed (but not goal-directed);
N neither goal-directed nor weakly goal-directed

(minimal solution paths are included in these totals)
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Hypothesis 2. The presence of the nested structure of subproblems
in the TOH problem permits us to define stages during problem solving,
in which the subproblems of a particular level are solved in the mini-
mum number of moves. For each problem solver, a 2-ring stage was
defined to begin at the first pcint subsequent to which the solver's
path through tore than half of the 2-ring subspaces was congruent to the
straight-line path [Path (1) in Figure 7C.1(b)]. During the period
when hal,f or fewer of the 2-ring subspaces were traversed by such
minimal solution paths, the subject was said to be in a I-ring stage.
Similarly, a 3-ring stage was defined to begin at the first point
subsequent to which the solver's path through more than half of the
3-ring subspaces was a minimal straight-line path. The first path in
Figure 7C.1(a), for example, is characteristic of a 2-ring stage: in

this path, six successive 2-ring subspaces are traversed by minimal
straight-line paths, while two successive 3-ring subspaces are not.

Table 7C.2 shows how a subject's paths are analyzed with respect
to the sequences of subspaces that are entered.

The sequence of stages is imiariant by virtue of the way they are
defined--in traversing a 3-ring subspace by means of a straight-line
path, it is automatic that two 2-ring subspaces will be traversed by
means of straight-line paths. However, it is not necessary that all
stages occur for all subjects. For example, a subject nay from the
outset traverse more than 50 percent of the 2-ring subspaces by mini-
mal paths; then that subject does not display the 1-ring stage as we
have defined it. A subject may pass directly from a 1-ring stage to
a 3-ring stage, bypassing the 2-ring stage, and so forth.

Of the 51 subjects in this study, six displayed no stages (these
were the six who solved the main problem in their first attempts in
the minimum number of moves); 16 displayed just one stage; 22 dis-
played just two stages; and seven displayed all three theoretically
possible stages. The 1-ring stage was evident for 21 subjects and
skipped by 30; the 2-ring stage was evident for 37 subjects and
skipped by 14; and the 3-ring stage was evident for 23 subjects and
skipped by 23, being undefined for five subjects who did not complete
their minimal solution paths.

Although a 50 percent criterion was set a priori as the defini-
tion of the beginning of a new stage, the actual percentages of minimal
solution paths prior to the beginning of a stage are substantially
lower than 50 percent, while the actual percentages after the stage
has begun are substantially higher. When these percentages are aver-
aged over all subjects to whom they are applicable, it is found that
duririg the I-ring stage, the average subject travirsed only 33 percent
of the 2-ring subspaces by minimal solution paths; subsequent to the
end of the 1-ring stage, the average subject traversed 91 percent of
the 2-ring subspaces by minimal paths. Correspondingly, prior to the
end of the 2-ring stage, the average subject traversed only 23 percent
of the 3-ning subspaces by minimal solution paths; subsequent to the
end of the 2-ring stage, the figure is 87 percent. These data seemto
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Table 7C.2 The Sequences of Subspaces Entered by Subjects' Paths

Subject 1

1-ring stage 2-ring stage -ring -stage

la,
2-ring 1 0 0 0 00 11 1 0 1 0 1 1 1011 11 1 1 1 0 1 1 1 1 1 1 1 11

3-ring 0 0 0 1 0 1 0 1 1 0 1 1 0

4-ring 0

Subject 2

0

3-ring
2-ring stage stage minimal solution path

a
2-ring 1 0 1 1 0 I 1 1 1 1 1 1

3-ring 0 0 1 1 1

4-ring 0 0 1

Key: 1 = minimal straight-line path through a subspace
2 . non-minimal path through a subspace

a = beginning of 2-ring stage
b = beginning of 3-ring stage
c = end of 3-ring stage (beginning of minimal solution path)

Note that the 2-, 3-, and 4-ring subspaces are placed over each other
so as to indicate the time-sequence (ieft to right) of subspaces entered.
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indicate that a subject's acquisition of an n-ring subproblem struc-
ture, as evidenced by the production of minimal solution paths when
such subspaces.are entered, is a fairly well-defined event.

Hypothesis 3. Since the n-ring subspaces at a particular level
are all mutually isomorphic, it was hypothesized that a subject's non-
minimal paths through the 2-ring (or 3-ring) subspaces might tend to
be eongruent. For the -2-ring subspacas, a singla congruence class of
non-minimal solution path was predominant for seven subjects (accord-
ing to a pre-established criterion); for six subjects no single
congruence class was predominant; while for the remaining subjects,

no conclusion could be reached (because of insufficiently many non-
minimal paths, or an inconclusive distribution of these paths). For

the 3-ring subspaces, a single congruence class of non-minimal solu-
tion path was predominant for six subjects; for 21 subjects no single
congruence class was predominant; and for the remainder no conclusion
was possible.

These results appear inconclusive, and will not be elaborated
further in this section.

Hypothesis 4. The TOH problem state-space possesses a symmetry

automorphism. In the notation of Figure 4.12, the automorphism
exchanges the letters B and C in the description of any state, leaving
A fixed; for example, the image of state CCBA is BBCA. The automor-
phism thus maps the goal state CCCC into the state BBBB, which is not
a goal state in our presentation of the problem. Were the three pegs
of the TOH board to be arranged at the corners of an equilateral
triangle, the symmetry automorphism would represent the geometric
operation of reflection about*the altitude of the triangle.

From the initial state AAAA, there are two possible first moves:
to RAAA, which is "towards" the goal state, and to CAAA, which is not.
As subjects begin to explore the TOH problem by moving rings from peg
to peg, we might expect that due to the reflection symmetry, approxi-
mately half of the subjects would generate paths leading towards the
goal state CCCC, and about half would generate paths leading towards
BBBB instead. The former group will not need to reorient the direc-
tion of their exploration during problem solving. Thus we would predict
that approximately half of the subjects will, at some point in their
problem solving, recognize that a transformation of their previous
steps is required in order to arrive at the correct goal state.

Figure 4.15 illustrates the occurrence of a pair of successive
paths which are congruent modulo the symmetry automorphism. In the
first path, the subject has commenced,moving rings so as to approach
BBBB, but has apparently realized ti,t eh: direction is wrong.
Starting over, the subject has genepated n isomorphic image of the
previous path, state for ,state, butheading towards the goal state
CCCC. As illustrated4t61this figur, the second path in such a pair
of con ruent paths is not iieessarily the most direct solution path.
We conj that the interruption of a path, followed by the
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generation of its conjugate path under the symmetry automorphism,

corresponds to the acquisition of "insight" into the problem symmetry.
Thus it may be hypothesized that a path which is the second path in
such a congruent pair is more likely than other paths to be a minimal

solution path.

For the 51 subjects discussed above, two successive paths by the
same subject are defined to be a congruent pair if (a) the first path
is at least four.states long; (b) the second path is at least as long
as the first; and (c) the second path is conjugate to the first, state

for state, for the entire length of the first path. A path is classi-
fied as a minimal solution path if it connects the initial state to
the goal state in exactly 15 or 16 steps (this definition allows for
a 1-move deviation by the subject if it is immediately corrected).

The following h5rpotheses are investigated (Goldin and Luger, 1979):

(a) Predicted randomness of initial move: For subjects' very
first moves, the frequency of moves to state BAAA rather
than state CAAA does not differ significant1y from .50.

(b) Predicted frequency of the symmetry effect:. The propor-
tion of subjects whose moves generate a congruent pair of
paths does not differ significantly from .50.

(c) Correlation between a subject's first move and subsequent
occurrence of the symmetry effect: Subjects whose first
moves are to state CAAA are significantly more likely to
:--nerate congruent pairs of paths than subjects whose
ticst moves are to state BAAA.

(d) Association of the symmetry effect with successful problem
solving: A path which is the second path in a congruent
pair is significantly more likely to be a minimal solution
path than a path which is not the second path in a con-
gruent pair.

Hypotheses (a) and (b are tested using the binomial test; hypotheses
(c) and (d) are tested using the chi-square test for two independent
samples (Siegel, 1956). In the test of hypothesis (d), each path
(commencing with the initial state) is treated as an independent
event. This is not strictly correct, since two paths generated by
the same subject can scarcely be considered independent of each other.
However, there is no obvious way in which the lack of independence
which is theoretically present should affect the outcome of the hypo-
thesis; thus the chi-square test may be considered as a rough indi-
cation of statistical significance.

The outcomes are as follows:

(a) Among the 51 subjects there were 27 first moves to state
CAAA and 24 first moves to state BAAA. N 51 is suffi-
ciently large to approximate the binomial distribution by
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means of a normal distribution with a correction for

continuity. Then we obtain ; = .28 or' p<.39 even for
a one-tailed test. The data are therefore consistent
with the randomness of subjects' first

(b) Of the 51 subjects, 22 generated at least one congruent
pair of paths during the course of problem solving (one
subject generated two such pairs), and 29-dld,not do-so.
Then z = .84 or p<.20 even for a one-tailed tgst. The

data are therefore consistent with the hypothesis that
congruent pairs will occur for 50 percent of the subjects.

(c) Table 7C.3 is a 2x2 contingency table, showing the distri-
bution of subjects according to first move (state BAAA or
CAAA) and according to the occurrence or non-occurrence of
the symmetry effect during problem solving. For the data
in Table 7C.3, chi-square = 4.76 (where a correction for
continuity has been incorporated), df = 3, and p<.05 (for
a one-tailed test) in confirmation of hypothqpis (c). How-

ever, it should be noted that the significana ol the effect
lessens if the six subjects who solved the,problem in the
first trial are removed from the upper right cell. These
subjects, by virtue of having solved the problem via a
minimal path on the first trial, will not have,the oppor-
tunity to generate the second path which would be necessary
to observe the symmetry. effect. It is simply assumed that,
for these subjects, the effect is not present.

(d) Table 7C.4 is another 2x2 contingency table; but this table
shows the distributions of paths (trials) according to
whether or not each path is the second path in a congruent
pair, and whether or not each path is a minimal solution
path. Since each subject's first attempt cannot possibly
be the second path in a congruent pair, first trials have
been excluded from this table. For the data in Table 7C.49
chi-square = 10.59, df = 1, p<.005, and hypothesis (d) is
confirmed. However, note the comment above concerning the
use of chi-square here.

%

In short, it appearscon balance that a symmetry effect can be
defined using the concept of paths congruent under the symmetry auto-
morphism (Hypothesis 4 of Chapter IV), and that the symmetry effect
is associated with success in the problem task.

2. Transfer Between Isomorphic Problens

The second studydiscussed here (Luger and Bauer, 1978) examines
transfer between the TOH problem and one of its isomorphs, the Tea
Ceremony (TC) problem, which was first studied by Hayes and Simon
(1974).
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Table 7C.3 Dis :bution of Subjects

congruent
pair

no congruent
,-. pair
-,

totals

first move to BAAA 6 -18--- 24

first move to CAAA ---__16_ 11 27

totals 22 51

Table 7C .4 Distribution of Paths (excluding first trials)

second 'not the second
path in a path in a

congruent congruent
pair pair totals

minimal solution path 15 29 44

not a minimal solution path 8 80 88

totals 23 109 132
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7C.1 Three paople, a host, an elder and a youth, partici-
pate in the ceremony. There are four tasks they
perform, listed in ascending order of importance:
feeding the fire, serving cakes, serving tea, and read-
ing poetry. The host performs all the tasks at the
beginning of the ceremony, and the tasks are trans-
ferred back and forth among the participants until
'all the tasks are perfbrmed by the youth, at which
time the ceremony is completed. There are two con-
straints on the transfer of tasks: only one taskthe
least important a person is perfbrmingmay be moved,
and no person may receive a new task unless it is less
important than any task they perfbrm at the time. The
object of the Tea Ceremony game is to transfer the
efhur tasks P.om the host to the youth in the fewest
number of moves.

In the Tea Ceremony problem, each task is represented by a block with
a square base; the height of each block represents the relative impor-
tance of each task. The transfer of the blocks is constrained by
means of a track, thus allowing access only to the block representing
the least important task a person is performing.

The three people--host, elder, and youth--correspond to the three
pegs in the TOR problem--A, B, and C respectively. The four tasks--
feeding the fire, serving cakes, serving tea, and reading poetry--
correspond to the four rings in the TOH problem--1, 2, 3, and 4

respectively. These labels have been introduced for convenience in
the above diagram.

Forty-eight subjects, all second-year psychology students at the
University of Edinburgh, volunteered for the study. These were randomly

assigned to two treatment groups: 24 solving the TOH problem first and
then the TC problem (T0H-1 and TC-2), and,24 solving the TC problem
first and then the TOH problem (TC-1 and TOH2). Subjects were told
they were solving two different problems,.and no reference was made
before or during the problem solving to any relationship between them.
Criterion for each problem consisted in performing the minimal sequence
of moves corresponding to the solution within a 90-second time period.
Although subjects were not explicitly informed of a time criterion,
they were if necessary told, "Your solution was in the fewest possible
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number of moves. Now see if you can repeat this solution a little

more quickly." The data for six subjects were not used, either
because of prior experience with one of the problems (2), or

inability to meet the criterion within a 45-minute time period (4).
Data for the remaining 42 subjects are tabulated in Table 7C.5.

Hypothesis 6. This study provides a test of Hypothesis 6 of
Chapter IV. TOH-1 is compared with TOH-2 and TC-1 with TC-2 with
respect to the difficulty measures of total time required and total
number of states entered. Table 7C.5 lists the medians (M) and
interquartile ranges (IQR) for each group of subjects on each problem.
The (one-tailed) Mann-Whitney U-test was used to determine the signi-
ficance levels. There was a significant decrease both in total time
to solution and the total number of states entered between TOH-1 and

TOH-2 (p< .001 for both measures using a one-tailed test). There was
also a significant decrease between TC-1 and TC-2 (p< .02 for the
time, and p<.05 for the number of states entered, for a one-tailed
test). Thus significant transfer occurred from one problem to the
other, in either order of presentation.

An analysis of variance was also performed, indicating that the
TC problem was more difficult than the TOH problem with respect to
both measures, regardless of the order of presentation (p< .01).

Hypothesis 7. The evidence from this study is somewhat incon-
. clusive with respect to the "deep end" hypothesis disCussed in Chapter

IV. From the fact that the level of significance for transfer from the
TC Problem to the TOH problem was greater th4n that for transfer from

the TOH problem to the TC problem, one might infer.that more transfer
occurred when the TC problem was presented first. However, in the
analysis.of variance the problem order did not have a significant
effect on either measure of difficulty: that is, the total number of
moves and the total time required for solving both problems were not
significantly influenced by the order of presentation;

Thus for these problems there may be a mild "deep end" effect
(greater transfer when the more difficult problem is solved first)
or none at all; additional evidence from more subjects is required.

To summarize, the above two studies have interpreted Hypotheses 1-4
and Hypotheses 6-7 from Chapter Iv, Section 3 in a concrete fashion
for the Tower of Hanoi problem and its isomorph, the Tea Ceremony
problem. For the subject populations which were studied, confirming
evidence was found for Hypotheses 1, 2, 4, and 6, while zhe evidence
for Hypothesis 3 and 7 was scanty or inconclusive. Min:e important

than the details of the outcomes is the feasibility of this approach
to the study of problem-solving behavior; namely, the graphing of

behavior paths through the state-space, and the quantitative test
of hypotheses concerning patterns in the obse'rved paths.
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Table 7C.5 rieasures of Difficulty for the Experimental Problems

TOH-1 (N = 23) TOH-2 (N = 19) TOH-1 = TOH-2

Time (seconds): M = 307 IQR = 233 M = 79 IQR = 134 p < .001

Number of states: M = 69 IQR = 26 M = 32 1QR = 30 p < .001

Time (seconds):

Number of states:

TC-1 (N = 19) TC-2 (N = 23) TC-1 = TC-2

M = 386 IQR = 408 M = 242 IQR = 245

. 88 IQR = 114 M = 61 IQR = 68

p < .02

P < .05(a)

M = median; IQR = interquartile-range. The Mann-Whitney (one-tailed)
U-test was used to determine the significance levels.

(a) This corrects a typographical error which appeared in Luger and
Bauer (1978), Table 1.
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VIII.

Heuristic Behavior Variables in Research

A.

Heuristic Behaviors Associated with Problem Tasks

by

Fadia Harik*
Indiana University

Bloomington, Indiana

In Chapter V, the potential for heuristic behavior to be inherent
in a task was discussed. We shall consider a heuristic process to be
inherent in a problem when: (a) in a strictly logical sense, the pro-
cess can be applied successfully to the problem; and (b) there exists
a population of subjects of which a majority applies-the process to
the problem, independently of individual differences.

Establishing that a certain process is inherent in a particular
task has important consequences for the study and teaching of prob-
lem solving. Being able to develop a task that will elicit a
particular process enables the researcher to look more closely at
that process, and to explore its characteristics in detail. It also
enables the teacher to select appropriate tasks and to provide appro-
priate instruction in the improvement of the process.

In this chapter, these ideas are illustrated by describing and
analyzing the heuristic process of trial-and-error. The tasks in the
present study were originally developed for two reasons--first, to
look at the influence of certain task variables on the difficulty
of the task; and secondly, to elicit the heuristic process of trial-
and-error as an "inherent" process, so that it could be closely
examined. Here we shall discuss only the latter purpose.

Some of the criteria that were used in developing the tasks were
the following: (a) the tasks should have a standard method of solu-
tion that permits methodical analysis by the researcher; (b) the
standard method of solution should not have been previously taught to
the solvers; (c) the task should be solvable using basic skills avail-
able to the solvers from previous learning, such as the operations of
addition, subtraction, multiplication, and division of positive inte-
gers; (d) the tasks should vary systematically, to allow study of the
effects of increasing complexity; in particular, how the process of
trial-and-error might vary with the tasks while maintaining its major
characteristics; (e) the solution process should require observable
behavior that is repeated; that is to say, the tasks should be

*Current address: University of Maryland, College Park, Maryland.
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sufficiently complicated so that several trials are needed before the
solution is found, and so that the trials have to he Written rather

. than oral.

Based on these criteria, sets of problems were constructed as
described below.

1. Definitions of Problem Characteristics

Story problems were developed which, when routinely translated,
yield two or more simultaneous equations. It is to be noted that the
subjects were untrained in algebra, and therefore were not expected
to be able to translate the problem statements into simultaneous
equations in the routine manner. The problems have different values
of three variables: the number of unknowns, the number of conditions,
and the size of the search apace.

The following definitions were adopted. An unknown is a quantity
described in the problem statement for which the value is not expressly

given. A condition is a statement which translates to a linear equa,
tion involving at least two unknowns. The number of conditions in the
problem is the number of linear equations that are obtained by direct
translation of the verbal problem statement. The search space of a
condition of a problem with n unknowns is the set of all n-tuples of
positive integers that satisfy the condition. A finite condition is
a condition whose search space is finite. When all of the problem
conditions are finite, the search space of the problem is the union
of the search spaces of the conditions.

The idea of a search space is analogous to the corresponding
concept in information processing. It is based on the assumption
that trial-and-error is not completely random, and that in most cases
trials emerge from a domain of possibilities that satisfy some of the
conditions in a problem but not necessarily all of them.

Six'systems of simultaneous equations were develoOed; two involv-
,

ing two equations and two unknowns, two involving two equations end
three unknowns, and two involving three equations and three unknowns.
Each pair of systems contained one example of a small search space,
and one example of a large one.

To illustrate what a search space is, let us consider the follow-
ing problem:

844.1 A clothing factory makes blouses and dresses. A

blouse takes 5 ft. of material, and a dress takes
25 ft. The factory uses a total of 150 ft. and'
produces 12 pieces of clothing. How many of each
kind are iiroduced daily?.
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Table 8A.1 Problem Sets Used in the Stu4

There are a total of 36 problems, corresponding to six systems
of equations embodied in six stories. Each problem is labeled
by a pair of numbers (a,b); where a stands for the system of
equations and b stands for the story embodiment.

Problem Set 1

Equations: 5x 25z = 160 Search space: 16 elements

x z = 12 Correct answer: (x,z) = (7,5)

(1,1) Sam has $1.60 in nickels and quarters. He has 12 coins in all.
How many coins of each kind does Sam have?

(1,2) Jeff bought 5 jawbreakers and 25 candy canes for $2.60. A

candy cane and a jawbreaker together cost 12 cents. How much
did Jeff pay for each piece?

(1,3) Janet had a birthday party. She gave bags of candy to her
friends. Some bags had 5 lemon drops, other bags had 25 redhots.
Altogether there were 160 pieces of candy. There were 12 bags.
How many bags of each kind were there?

(1,4) A clothing factory makes blouses and dresses. A blouse takes
5 ft of material and a dress takes 25 ft. The factory uses a total
of 160 ft daily and produces 12 pieces of clothing. How many of
each kind are produced daily?

(1,5) Linda and David were on a walk for Mankind. Linda got pledges
of 5t for each mile she walked.. David got pledges of 25t for each
mile he walked. Both walked for a total of 12 miles and got total
pledges for $1,60. How .many miles did each.one walk?

(1,6) Mrs. Robinson has a puzzle corner in her classroom. A kid scores
5 points for solving a picture puzzle and 25 points for solving a
block puzzle. Carol solved a total of 12 puzzles from both kinds
and scored 160 points. How many puzzles of each kind did she solve?
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Table 8A.1 continued

Problem Set 2

Equations: 5x + 10y = 160

+ y = 29

Search space: 42 elements

Correct answer: (x,y) = (26,3)

(2,1) Sam has $1.60 in nickels and dimes. He has 29 coins in all. How

many coins of each kind does Sam have?

(2,2) Jeff bought 5 jawbreakers and 10 pieces of bubble gum for $1.60.
A jawbreaker and a bubble gum together cost 29. How much did
Jeff pay for each piece?

(2,3) Janet had a birthday party. t-Ssir gave bags of candy to her friends.
Some bags had 5 lemon drops, other bags had 10 gumdrops. Altogether
there were 160 pieces of candy. There were 29 bags. How many
bags of each kind were there?

(2,4) A clothing factory makes blouses and skirts. A blouse takes 5 ft
of material and a skirt takes 10 ft. The factory uses a total of
160 ft daily and produces 29 pieces of clothing. How many of each
kind are produced daily?

(2,5) Linda and Jim were on a walk for Mankind. Linda got pledges of
5t for each mile she walked. Jim got pledges of 10t for each mile
he walked. Both walked for a total of 29 miles and got total
pledges for $1.60. How many miles did each one walk?

(2,6) Mrs. Robinson has a puzzle corner in her classroom. A kid scores
5 points for solving a picture puzzle and 10 points for solving a
story puzzle. Carol solved a total of 29 puzzles from both kinds
and scored 160 points. How many puzzles of each kind did she solve?

Problem Set 3

Equations: 5x + lOy + 25z = 160 Search space: 74 elements

x y + z = 10 Correct answer: (x,y,z) = (3,2,5)

(3,1) Sam has $1.60 in nickels, dimes and quarters. He has 10 coins in all.
How many coins of each kind does he have?
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Table 8)1.1 continued

(3,2) Jeff bought 5 jawbreakers, 10 pieces of bubble gum, and 25
candy canes for $1.60. A jawbreaker, a piece df bubble gum, and
a candy cane together cost 10. How much did Jeff pay for each
piece?

(3,3) Janet had a birthday party. She gave bags of candy tOrker friends.
Some bags had 5 lemon drops, other baps had 10 gundrops, and the
rest of the bags had 25 redhots. Altogether there were 160 pieces
of candy. There were 10 bags. How many bags of each kind were.
there?

(3,4) A clothing factory makes blouses, skirts and dresses. A blouse
takes 5 ft of material, a skirt takes 10 ft and a dress takes
25 ft. The factory uses a total of 160 ft daily and produces
10 pieces of clothing. How many of each kind are produced daily?

)c\

(3,5) Linda, Jim and David were on a wAlk for Mankind. Linda got pledges
of 5t for each mile she walked. Jim got pledges of 10t for each
mile he walked. David got pledges of 250 for each mile he walked.
All walked a total of 10 miles and got total pleages for $1.50.
How many miles did each one walk?

(3,6) Mrs. Robinson has a puzzle corner in her classroom. A kid scores
5 points for solving a picture puzzle, 10 points for solving a story
puzzle, and 25 points for solving a block puzzle. Carol solved
a total -If 10 puzzles from all 3 kinds and scored 160 points.
How many puzzles of each kind did she solve:

Problem Set 4

Equations: 5x + 10y + 25z = 155 Search space: 266 elements

x + y + z = 23 Correct answer: (x,y,z)=(18,4,1)

(4,1) Sam has $1.55 in nickels, dimes and quarters. He has 23 coins in
all. How many coins of each kind doer" Sam have?

(4,2) Jeff bought 5 jawbreakers, 10 pieces bubble gum and 25 candy
canes for $1.55. A jawbreaker, a piece of bubble gum and a !sandy
cane together cost 23t. How much did Jeff pay for each piece'

(4,3) Janet had a birthday party. She gave bags of candy to her friend:
Some bags had 5 lemon drops, other bags had 10 gumdrops and the
rest of the bags had 25 redhots. Altogether there were 155 pieces
of candy. There were 23 bags. How many bags of each kind were
there?
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Table 8A.1 continued

(4,4) A clothing factory makes blouses, skirts and dresses. A blouse
takes 5 ft of material, a skirt takes 10 ft, and a dresh takes
25 ft. The factory uses a total of 155 ft daily and produces,23
pieces of clothing. How many of each kind are produced daily?

(4,5) Linda, Jim and David were on a walk for Mankind. Linda got pledges
of 5t for each mile she walked. Jim got pledges of 10t for each
mile he walked. David got pledges of 25t for each mile he walked.
All walked a total of 23 miles and got total pledges of $1.55.
How many miles did each one walk?

(4,6) Mrs. Robinson has a puzzle corner in her classroom. A kid scores
5 points for solving a picture puzzle, 10 points for solving a
story puzzle and 25 points for solving a block puzzle. Carol solved
a total of 23 puzzles from all 3 kinds and scored 155 points.
How many puzzles of each kind did she solve?

Problem Set 5

Eqiiation: 5x + 10y + 25z = 155 Search space: 71

xt y+ z= 10 Correct answer: (x,y,z)=(4,1,5)

x + z = 9

(5,1) Sam has $1.55 in nickels, dimes and quarters. He has 10 coins in
all. Nine of these coins are nickels and quarters. How many
coins of each kind does he have?

(5,2) Jeff bought 5 jawbreakers, 10 pieces of bubble gum and 25 candy
canes for $1.55. A jawbreaker, a piece of bubble gum and a
candy cane together cost 104. The cost of a jawbreaker and a
candy cane is 9t. How much did Jeff pay for each piece?

(5,3) Janet had a birthday party. She gavebags of candy to her friends.
Some bags had 5 lemon drops, other bags had 10 gumdrops and the rest
of the bags had 25 redhots. Altogether there were 155 pieces of
candy. There were 10 bags. Nine of the bags were lemon drop bags
and redhot bags. How many bags of each kind were there?

(5,4) A clothing factory makes blouses, skirts and dresses. A blouse
takes 5 ft of material, a skirt takes 10 ft, and a dress takes
25 ft. The factory uses a total of 155 ft daily and produces 10
pieces of clothing. Nine of the pieces are blouses and dresses.
How many of each kind are produced daily?

(5,5) Linda, Jim and David were on a walk for Mankind. Linda got pledges
of 5t for each mile she walked. Jim got pledges of 10t for each
mile he walked. David got pledgcs of 25t for each mile he walked.
All walked a total of 10 miles and got total pledges of $1.55.
Linda and David alone walked for a total of 9 miles. How many
miles did each one walk?

8.5
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Table 8A.1 continued

(5,6) Mrs. Robinson has a puzzle corner in her classroom. A kid scores
5 points for solving a picture puzzle, 10 points for solving a
story puzzle and 25 points for solving a block puzzle. Carol
solved a total of 10 puzzles from all 3 kinds and scored 155 points.
9 of the puzzles.she solved were picture puzzles and block puzzles.
How many puzzles of each kind did she solve?

Problem Set 6

Equations: 5x + lOy + 25z = 160 Search Space: 248

x + y + z = 22 Correct answer: (x,y,z)=(15,611)

x z = 16

(6,1) Sam has $1.60 in nickels, dimes and quarters. He has 22 coins in
all. 16 of these coins are nickels and quarters. How many coins
of each kind does he have?

(6,2) Jeff bought 5 jawbreakers, 10 pieces of bubble gum and 25 candy
canes for $1.60. A jawbreaker, a piece of bubble gum and a candy
cane together cost 22. The cost of a jawbreaker and a candy cane
is 16t. How much did Jeff pay for each piece?

(6,3) Janet had a birthday party. She gave bags of candy to her friends.

Po Some bags had 5 lemon drops, other bags had 10 gumdrops and the rest
of the bags had 25 redhots. Altogether there were 160 pieces of
candy. There were 22 bags. 16 of the bags were lemon drop bags
and redhot bags. How many bags of each kind were there?

(6,4) A clothing factory makes blouses, skirts and dresses. A blouse
takes 5 ft of material, a skirt takes 10 ft and a dress takes 25 ft.
The factory uses a total of 160 ft daily and produces 22 pieces of
clothing. 16 of the pieces are ,blouses and dresses. How many of
each kind are produced daily.?

(6,5) Linda, Jim and David were on a walk for Mankind. Linda got pledges
of 5t for each mile whe walked. Jim got pledges of 10t for each
mile he walked. David got pledges of 25t for each mile he walked.
All walked a total of 22 miles and got total pledges of $1.60.
Linda and David alone walked a total of 16 miles. How many miles
did each one walk?

(6,6) Mrs. Robinson has a puzzle corner in her classroom. A kid scores
5 points for solving a picture puzzle, 10 points for solving a
story puzzle, and 25 points for solving a block mizzle. Carol
solved a total of 22 puzzles from all 3 kinds and scored 160 points.
16 of the puzzles she solved were picture puzzles and b)ock puzzles.
How many puzzles of each kind did she solve?
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This problem can be expressed algebraically.in the form of two equa-
tions and two unlowns:

5x 4- 25z 160 (i)

x + z 12 (ii)

If the subject Is working towards satisfying equation (i) alone with-
positive integers, he or she will have the followifig possibilities
for the values of x and z: (2,6) (7,5) (12,4) (17,3) (22,2) (27,1).
However, if the subject chooses to satisfy equation (ii) alone, the
possible values for x and z would be: (1,11) (2,10) (3,9) (4,8)
(5,7) (6,6) (7,5) (8,4) (9,3) (10,2) (11,1). Looking at the two

_sets of pairs of possible values, we find that there is only one pair

of possible values that they have in common.

It is assumed that the domain_where the trial-and-error search
for-an answer will take place could be the union of these two sets.
This union is referred to here as the search space.

Sizes of search spaces were varied with as little change in the
coefficients of the equations as possible. Once the systems of equa-
tions were developed, six different stories were written in such a way
that every story could be used to embody all six systems of equations.
The stories are such that only positive integer solutions to the prob-
lems are suggested. Thus, six systems of equations embodied in six
different stories produced a total of 36 problems. These problems are

arranged by sets and listed in Table 8A.1.

2. The Analysis of Observed Processes

By observing subjects solving the above problems, four different
kinds of "moves" by subjects were identified. The four kinds of moves
fall into two categories, guessing moves and deductive moves. A
guessing move is characterized by a series of actions as follows: (a)

a guess is made that may be correct or incorrect, totally random or
partially random; (b) calculations to test whether or not the guess
satisfies one or more conditions of the problem are carried out; and
(c) a conclusion is made as to the accuracy of the guess and the
direction in which it should be modified. The two kinds of observed
guessing moves are guessing an answer and guessing an operation. A
deductive move is characterized by a series of actions as follows:
(a) a deduction is made; (b) calculations that are consequent on the
deduction are made;.and (c) implications of the deduction for the rest
of the problem are,drawn. The two kinds of observed deductive moves
are deducing for an answer and deducing for an estimate.

We shall illustrate these moves through sample solutions of the
following problem:
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84.2 Jeff bought 5 jawbreakers 'and 10

gum for $1.60. 4 jawbreaker and
together cost 290. Row much did
piece?

Guessing Moves

A. Guessing an Answer

pieces of bubble
a bubble gum
J4f pay for each

"I'll try 10c for the jawbreaker-and 19c for the bubble
gum. That makes 10 x 5 = 50; 19 x 10 = 190; 50 + 190 =
240. No, that is too much. The bubble gmm should cost
less."

Here the subject of the guess is the values of the unknowns asked
for in the question. The calcufations are to test whether or not the
guess satisfies the conditions stated in the pxoblem.

B. Guessing an Operation

"29 4- 2 = 14 R1, 14c and a remainder of 1. No, I can't

have this. Try 10 + 5 = 15; 160 e 15 = 10 R10. No, it
doesn't work."

Here the student has made two "guesses"; but the subjects of the
guesses are the operations that might provide a reasonable answer.

Dedhctive Moves

A. Deducing for an Answer

"Since the jawbreakers and the bubble gum together cost
29, I'll try 29 x 5 = 145. I'll figure how much 5 other
pieces of bubble gum cost: 160 - 145 = 15; 15 4 5 ... 3;

3c for each bubble gum and 26c for each jawbreaker."

This is an algorithmic deductive move that is structurally the
same as the algebraic approach to the solution of the system of two
simultaneous equations.

B. Deducing for an Estimate

"If a jawbreaker alone costs 29, 5 jawbreakers cost
29 x 5 = 145. If the bubble gum alone costs 29, 10
bubble gum pieces cost 29 x 10 = 290. 145 is closer
to 160. The bubble gum should cost less than the jaw-
breakers."

This hypothetico-deductive approach is used for the purpose of
estimating an answer more accurately.
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Forme of "Guessing an Answer" Moves

The value of considering a heuristic process to be a task variable
lies in the perspective of observing the changing characteristics of
the process as elicited by variations in the task. Three groups of
tasks will be used to describe the most common forms taken by the
"guessing an answer" move in the present study.

The'first group of tasks consists of the twelve story problems
inyolving two equations and two unknowns. The only differences.among
the twelve problems are in the problem story context, and in the.size
of the search spaces. The equations representing the problems are:

(1) 5x + 25z = 160 (i)

x+ 12 (ii)

(2) 5x + lOy = 160 (1)

Search space:
Correct answer:

16 elements
(x,z) = (7,5)

Search spacei 42 elements
x+ y = 29 (ii) Correct answer: (x,y) m.(2,3)

The unknowns that can be guessed in each of the problems ale four;
for the first pair of equations, for example, they are x, z, 5xt and
25z. These vaYiables"have to satisfy two conditions, namely that
x + z = 12 and that 5x + 25z = 160.

ing
use

The guessing moves that have been exhibited by the subjects solv-
theabove twelve tasks can be classified into three forms. We will
Problem 8A.2 to illustrate each of the forms.

Form A:

"I will try 15c.for the gum; 15 x 10 = 1'50; 160 - 150 = 10;
10c for 5 jawbreakers gives' me 2c for each; 15 + 2 = 17.
No, I need 29."

Graphically, the move can be represented as in Figure 8A.1(a).
The subject makes a guess of the value of y, in this case the price of
a piece of bubble gum; finds the value of 10y; obtains a value of 5x
that would satisfy the equation 5x + lOy = 160; obtains a value for
x; and checks to see if it satisfies x + y = 29, The arrows indicate
the order in which the various values are obtained.

In the given example the initial guess was the value of y. How-7

ever, subjects seem to start their guessing with any of the four varia-

bles, and still use the same "form" as in Figure 8A.1(a). Graphically,
these variations of Form A appear in Fi.gure 8A.1(b)-(d). The major
difference among these diagrams is the starting point of the guess.

Form B:

"I will try 11c for each jawbreaker and 18c for each
bubble gum; 11 x 5 = 55; 18 x 10 = 180; 180 + 55 is
too much, I want 160."

ff5.4
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Figure 8A.1 A Fom of Guessing Move fer the First TOelve Problems
(Sets 2 an4

(a)

(b)

5x

(c) x y

5x lOy

(d) x y

5x lOy
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Figure 8A.2 A Second Form of Guessing Move-for the First Tbelve Problems

-(a)

5x lOy

(b)

336
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The graphic representation of Form B looks as in Figure 8A.2(a).
The subject splits 29 into two values for x and y, finds 5x and 10y,

them adds 5x and lOy to check if they amount to 160.

A move where 160 is split into two quantities and the values of

x and y are checked is represented in Figure 8A.2(b) and has a form

similar to the one above. The difference lies in the variables that
are subject to the initial guess.

Form C:

"12c for a piece of bubble gumleaves 17c for a jawbreaker.
12c for one will make 120 for all the gum. That leaves 40C
for jawbreakers; that means 40 5 = 8c for one jawbreaker.
It does not work, I need 17c." .

In both Forms A and B, one equation was satisfied, and the other
equation was used to check if the guess worked. In Form C both
equations are satisfied, and the subject looks to see if they lead
to the same value. This protocol is depicted in Figure 8A.3(a).

As in Form A three variations of Figure 8A.3(a) appear in Figivres
8A.3(b), (c), and (d).

The second group of tasks consists of the twelve story problems
involving two equations and three unknowns. Again the only differ-
ences among the problems are in the problem story contexts and in
the size of the search spaces. The equations representing the prob-

lems are:

(3) 5x + 10y + 25z = 160 Search spaze:

x + y + z = 10 Correct answer:

(4) 5x + lOy +25z = 155 Search space:
x + y + z = 23 Correct answer:

74 elements
(x,y,z) = (3,2,5)

266 elements
(x,y,z)= (18,4,1)

Guessing moves that have been utilized by subjects can be classified
into two forms, which will be illustrated using the following problem:

8A,3

Form

"Ten
that
50 +

Sam has $2.Fa i
has 10 coins in
he ha.gtj

t*.
--\.

coins; I'll try
will make: 2 x

40 + 20 = 110.

nickel,s, dimes and quarters. He

ZZ. How many coins of each does

2 quart s, 4 dimes and 4 nickels,
25 = 50; 4 x 10 0 40; 4 x 5 = 20;
No, I should have more."

Graphically, this can be represented as in Figure 8A.4. The
subject splits "ten" into trial values for x, y, and z, finds 5x, 10y,
and 25z, then adds them to verify whether or not they amount to 160.
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Figure 8A. 3 A Third Form of Guessing Move for tile First Twelve Problems

(a)

5x 4tc- lOy

(b) x y

1
5x 1 Oy

X y

5x ----gOy

(d) x y

5x lOy
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Figure 8A.4 A Form of Guessing Move for the Second Group of TWelve

Problems (Sets 3 and 4)

lOy 25z

Figure 8A.5 A Second Form of Guessing Move for the Second Group of
Twelve Problems

5x -I. (10y+ 25z):

859

l'
lOy 25z
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Form B:

"4 nickels make 20c; 6 more coins and 160 - 20 0 140C.
4 quarters make a dollar; that leaves 40 cents, it will
make 4 dimes. No, I need 2 dimes; I'll try less: 3

quarters...."

Graphically, this can be represented as in Figure 8A.5. Here the
subject allocates 20c for 4 nickels, reduces the problem to 4 coins
that are dimes and quarters totalling 140, and t en proceeds to
attempt a two-unknown, two-condition problem. Th essential charac-

teristic of this forM' is that the subject has trea d the three
unknowns by treating two unknowns at a time, and has zed the
forms used in the problema with two unknowns. Thus Figures Mega) and
8A.3(b) are both components of Figure 8A.5. In effect, the associa-
tive property has been utilized.

Form C:

"2 nickels and 4 dimes will make 10 + 40 = 50; that leaves
110 for the quarters. No, it won't work."

Here the subject makes guesses on two unknowns, nickels and
dimes, and combines them.into a single quantity to be coordinated
with the third unknown, quarters.

Figure 8A.6, like Figure 8A.5, is a composite of diagrams for
two-variable forms. The difference between Forms B and C can be
interpreted as in Figure 8A.7.

The third group of tasks consists of the twelve story problems
involving three equations and three unknowns:

(5) 5x + 10y + 25z = 155 Search space:
x + y + z = 10
x + v + =

(6) 5x + lOy + 254 = 160
x + y + z = 22

+ z = 16

Correct answer:

Search space:
Correct answer:

71 elements
(x,y,z)= (4,1,5)

248 elements
(x,y,z)= (15,6,1)

Subjects who deduce a value for y from the second and third equa-
tions reduce these problems to two-variable, two-equation problems
similar to the first group of tasks. This makes the effective search
spaces substantially smaller for those subjects. Under this condi-
tion, the search space for equations (5) has only 12 elements, and the
space for equations (6) only 17. Subjects who do not make such a deduc-
tion will have six quantities to guess, and their search spaces will be
very similar to the second group of problems.

A guessing move on the following problem illustrates how the prob-
lem Is reduced to a simpler problem:

3(10
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Figure 8A.6 A Third Form of Guessing Move for the Second Group of
Twelve Problems

Y: (x+y)

1
5x lOy: (5x+ lOy)----,25z

,Figure 8A.7 Comparison of Figures 844.5 and 844.6

initial guess

(a * b) *

I 1'
initial guess

Form B (Fig. 8A.5) Form C (Fig. 8A.6)

361
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Figure 8A.8 A Form of Guessing Move for the Third Group of Twelve
Problems (Sets 5 and 6)

eduction ---a. y ---> (x + z) : x z

1
--al,

i i
lOy ------* (5x + 25z) : 5x 25z
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BA.4 Mrs. Robinson has a puzz.le corner in her classroom.
A kid scores 5 points far solving a picture puzzle,
10 points far solving a story puzzle, and 25 points
for solving a block puzzle. Carol solved 22 puzzles
and scoi'ed 160'points. 16 of the puzzles she solvqd
were either picture or block puzzles. Row many
puzzles ofeach kind did she solve?

Form A:

"16 puzzles were picture and block puzzles. That leaves
6 story puzzles; 60 points leaves 100 points; I'll try
10 picture puzzles and 6 block puzzles; that will make
10 x 5 50; 6 x 25 m 150. No, this is too much; I'll
try 15 and 1...."

As represented in Figure 8A.8, the subject *s making a deduction
to obtain the number of story puzzles, and then reducing the problem
to a problem in two unknowns, picture and block puzzles, worth a
total of 100 points. The difference between the graphic representa-
tion of the move here and the moves associated with the second group
of problems is the fact that the first phase of the move here is a
deduction and not a guess. Thus there are only two variables that

require guessing.

Form B:

When subjects do not make the deduction, they are effec-
tivelY solving a three-unknown, two-condition problem. The
guessing forms in that case are identical to those.in Figures
8A.4, 8A.5, and 8A.6.

3. Empirical Findings

The subjects chosen were 60 average and above-average seventh-
grade students who had not had any formal instruction in algebra.
Of the 36 problems in Table 8A.1, six problems in random order were
presented to each subject, including one problem for each system of
equations. The purpose was to randomize any learning effects or
transmission of information among subjects. Each subject was inter-
viewed for a period ranging from 45 minutes to two hours. Subjects

were asked to think aloud. Their written and oral work was recorded
and analyzed.

Information from all of the subjects was used in establishing
the classifications of heuristic processes; however, the preliminary
empirical data reported here are based on the detailed analysis of
just 20 randomly selected subjects.

It was hypothesized that the majority of the subjects would use
the heuristic process of "guessing an answer" at some point during
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problem solving, and that, of those who sucCessfully solved the prob-
lems, even a greater majority would have utilized the "guessing and
answer" process. In Table 8A.2, the data are displayed indicating
the use of the "guessing an answer" heuristic process by subjects
solving the six word problem embodiments of each of the six systems
of simultaneous equations.

On only two successful problem-solving attempts was the alge-
braic approach used rather than trial-and-error.

Comparing the frequencies of occurrence of all four kinds of
moves described, the "guessing an answer" moves were by far the most
frequent. During those problem-solving attempts which led to
Successful solutions, this process occurred even more frequently
(see Table 8A.3).

The "deduction for an answer" moves occurred mot frequently

in systems of equations 5 and 6. The deductive moves in these

problems occurred in conjunction with the guessing moves for

reasons inherent in the-problem structure, as was discussed in

the previous section.

The above takles are purely descriptive, and the data have not
(yet) been subjected to statistical tests. However, it is apparent
that the "guessing an answer" process occurs more frequently than
the other processes when word problems involving simultaneous equa-
tions are given to students who have had no formal algebraic training.
Since this process seems to occur regardless of 'Idividual differ-
ences among the students, we can claim that the trial-and-error
heuristic process is "inherent" in the problems for this population
of subjects, and it can be studied as a task or problem variable.

A major theme emerges from observing the "guessing an answer"
moves; a theme which Polya calls "reducing the problem to a simpler
one." This tendency to reduce the problem takes several forms; from
large and permanent reductions to small and temporary ones. Some

reductions lead to a solution of the problem while others change
the problem.

We shall first look at problem reduction that results from lack
of coordination of simultaneous conditions. Such reduction is
exhibited by guesses that involve one of the conditions with conplete
disregard for the other condition(s). A subject who is solving a
problem embodying the first system of equations, for example, would
guess a value for x and z that would satisfy 5x + 25z = 160, with
complete disregard for the fact that x + z has to be 12. Variations
on this guess would be guesses for the pair (x,z) or the pair (5x,25z)
that would satisfy either x + z = 12 or 5x + 25z = 160 but not both.
Of the 20 subjects considered in this report, 11 subjects failed to
coordinate the simultaneous conditions in at least one problem attempt.
Among the 91problems attempted where coordination or lack of it could

3qi
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Table 8A.2(a) Utilization of the Problem-Solving Process of "Guessing an Answer"
by Subjects at Some Point. During Problem Solving

System of Equations 1 2 3 4 5 6

Number of Subjects
Attempting the Problem 20 19 18 16 16 19

Number of Subjects Using
"Guessing an Answer" 18 14 14 13 16 14

Percentage of Subjects
Using "Guessing an
Answer" 90% 74% 78% .81% 100% 74%

(b) Utilization of the Problem-Solving Process of "Guessing an Answer"
by Successful Subjects at Some Point During Problem Solving

System of Equations 1 2 3 4 5 6

Number of Successful
Subjects 10 9 5 8 10 8

Numker of Successful
Subjects Using
"Guessing an Answer" 10 8 5 8 10 7

Percentage of Successful
Subjects Using
"Guessing an Answer" 100% 89% 100% 100% 100% 88%

3us
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Table 8A.3(a) Frequencies of nipes of Moves

(The attempt of a subject on each problem may include one or
more moves.) 1\

System of Equations 1 2 3 14 5 6

Number of Subjects 20 19 18. 16 16 19

Attempting the-Problem

Total Number of Moves 98 114 94 120 ' 56 85

Number of GA Moves 77 87 88 103 39 59

Number of GO Moves 19 22 3 25 3 11

Number of DA Moves 0 2 2 0 14 15

Number of DE Moves 2 3 1 2 0 0

Percentage of GA Moves 79% 76% 94% 86% 70% 69%

Percentage of GO Moves 19% 19% 3% 127= 5% 13%

Percentage of DA Moves 0% 2% 2% 0% 25% 18%

Percentage of DE Moves 2% 3%. 1% 2% 0% 0%

Key:

GA =

GO =

DA =

DE =

at

"Guessing an Answer"

"Cuessing an Operation"

"Deducing for an Answer"

"Deducing for an Estimate"
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Table 8A.3(b) niequencies of Types of Moves in.Attempts Leading to
Successful Solutions

(The attempt of a subject on each problem may include one or
more moves.)

System of Equations ,1 2 3 4 5 6

Number of Successful Subjects 10 9 5 8 10 8

V,
Total Number of Moves 69 1-67 24 86 35 ,44

Number of GA oves 59 60 24 81 26 35

Number of GO Moves 10 4 0 4 1 0

Number of DA Moves 0 2 0 0 9 9

Number of DE Moves 0 1 0 1 0 0

Percentage of GA Moves 85% 90% 100% 94% 72% 80%

Percentage of GO Moves 15% 6% 0% 5% 3% 0%

Percentage of DA Moves 0% 3% 0% 0% 25% 20%

Percentage of DE Moves 0% 1 .0% 1% 0% 0%

3(4
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be determined, 26 problem attempts exhibited lack of coordination of
simultaneous conditions. It is worth noting here that the majority
of the subjects who did not coordinate also did not exhibit a con-
sistent lack of coordination. That is to say, a subject would
coordinate conditions in one of the problems but not in another.
Some exhibited lack of coordination in some of the guesses in a
problem but not in all the guesses, an indication that their coor-
dination ability had not been stabilized yet. In contrast to this
situation, fifth-grAle students given similar problems exhibited
lack of coordination to a greater extent and in a more consistent
manner (Harik, unpublished).

Preliminary oliservations across the variations in the tasks indi-

cate no change in the degree of coordination (see Table 8A.4). This

fact may lead us to consider the degree of coordination of the prob-
lem conditions as a consequence of individual development, rather
than as a factor influenced by the limited variations in the task

structures.

Another kind of prnblem reduction'occurs when a deductive move
is available such as in Problem Sets 5 and 6, where the problems
have three unknowns and three conditions. A subject would make a
deduction from the latter Vigo equations in Table 8A.1, and reduce
the problem to a two-unknown, two-condition problem. Of the 16 and
19 subjects who attempted problems from Sets 5 and 6 respectively,
14 subjects used a deductive move in the problems from each of these
two sets. The numbers of subjects who followed the deductive move
by guessing moves which led to correct solutions were 10 and 8
respectively. All those who solved problems'from Sets 5 and 6
successfully used a deductive move to reduce the problem to a

simpler one.

Preliminary observations of the interaction between deductive
mo s and guessing moves in Problem Sets 5 and 6 indicate that some
subj cts confuse the certainty of a deduction with the uncertainty
of a uess. This confusion appears when a subject deduces the value

of y n one move, then goes on to guess the value of y along with

the v ues x and z in the next move. Of the 14 subjects who made
the de uction in the problems from each of the Sets 5 and 6, four
subjec s solving problems from Set 5 and three subjects solving prob-
lems from Set 6 exhibited this behavior. However, two of the subjects
for Set 5 and one subject for Set 6 subsequently resolved the confu-
sion. All those who did not do so failed to solve the problem(s).

A third kind of problem reduction occurs when a subject uses
II guessing an answer" moves with the three-unknown, two-condition
problems such as those in Sbts 3 and 4. In those problems, the fotm
that the guessing Move takes reduces the three unknowns to two
thr-Jugh the associative law, as was shown graphically in the previous

section. The data on this kind of problem reduction have not (yet)
been analyzed.
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Table 8A.4 Degree of Coordination of the Pmblem COnditione

System of Equations 1 2 3 5 6

Number of Subjects
AttemPting the Problem 20 19 18 16 16 19

Number of Attempts
Exhibiting Coordination
of the Problem Conditions 11 11 11 11 11 10

Number of Attempts
Exhibiting Lack of
Coordination of the
Problem Conditions 5 3 5 2 4 7

Number of Attempts for
which the Coordination of
the Problem Conditions
was Uncertain 4 2 3 1 2

a
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4. ,Summary

Six sets of word problems were created, in which problem context
and structure Vere varied systematically. We have been able to define'

a variety.of available moves, mnd to observe that the process of
guessing an answer and modifying the guess is the most frequently
used process for these problems in the sample of seventh graders.
This process was the only process that led to successful solutions
in four of the six problem sets. It is interesting to note the
difference between the intuitive problem-solving process apparently
used by children, namely trial-and-error, and the problem-solving
algorithms taught to children, in this case the algebraic approach
to solving simultaneous equaticas.

We elso observed three ways in which a prbblem is reduced to a
simpler one: (a) disregarding some of-the conditions of the problem;.
(b) making a deamtion that reduces the number of conditions and
unk,Lowns of the problem; and (c) reducing a three-unknown guess to
a two-unknown guess through the use of associativity. The first
reduction changes the original problem to another problem; the second
reduces the original prIblem to a subproblem; while the third reduces
the guessing moves to simpler guessing moves.
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The coding system described in this chapter was developed out
of a collaborative team research effort over a period of several
years. Its major objective was to study heuristic processes in
mathematical problem solving across varying developmental levels.
A secondary objective was to develop an instrument to organize and

record processes in their sequence of observed occurrence. The

coding system is a partial fulfillment of the secondary objective.
It represents, however, but one stage of refinement in a continuous
evolutionary process, since at the time of this writing the team is
still active.

1. Rationale

Clinical research in mathematical problem solving over the past
decade has concerned itself mainly with the process of problem solv-

ing; that is, the set of behaviors (actions, operations, decisions,
and rationale) which direct and characterize the search for a solu-
tion as an individual progresses from initial state to goal state of

a problem. It has become increasingly important to develop instru-
ments which reflect and measure the problem-solving process as well

as the product. A process-sequence coding system has been developed
and will be presented here along with examples of.its use. Our aim

in developing the coding system is to be able.to describe a set of

behaviors and events through associated cxle Symbols which can be
arranged in time-sequence of occurrence, so that a user of the system

can catch a glimpse of the entire problem-solving process and not

have his or her view restricted simply to the problem statement,
several written steps, and In outcome.
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Three questions are suggested by the developmftt of this coding

system. They are:

(a) How might a researcher evoke observable and natural behaviors;
that is, what is a feasible method for sampling genuine pro-
cess behavior in problem solving?

(b) What manner of symbolic format best represents what.actually
happens during problem solving?

(c) Assuming there are behaviors sufficiently general to mathe-
maticalAaroblem solving that can be identified within and
across various developmental levels, can researchers be
trained to identify these behaviors consistently?

The first question has been dealt with by researchers over the
years in a number of ways; e.g., silent problem solving with paper-
and-pencil testing, multiple-choice options, branching formats, retro-
spection, introspection, and simultaneous thinking-aloud. There is a-

growing body of literature on techniques.for collecting and anab:zing
problem-solving behavior, but a discussion of the advantages and dis-
advantages of the various reporting styles will not be given here.
Suffice it to, say that the coding system described here was derived
from data collected in the "simultaneous thinking-aloud" response
style, where subjects of different ages and developmental levels solved
problems and simultaneously verbalized thoughts during the solution.
It is the opinion of the writers, therefore, that the coding system
adapts best to data gathered in the same way,

With respect to validity of representation (question b), each
thinking-aloud self-report was audiotaped, and the subject's written
work, audiotape, and interviewer notes were synthesized to obt-ain a
picture of the problem-solving process. In this manner, the authors
collected samples of problem-solving behavior during pilot work taken
from subjects across varying developmental levels. Using these sam-
ples together with Polya's writings on heuristics as a basis for
discussion, the authors came to an agreement on the definitions for
a set of constructs which were to represent observable, disjoint
problem-solving behaviors qnd related phenomena. The constructs
were selected and defined so as to capture each event in the problem-

Solving process. Each event was assigned a symbol, and the collec-
tion of events which comprised a problem-solving sequence of processes
was recorded in a horizontal string of symbols corresponding to the
chronological orde; of appearance during the actual problem solution.
In this manner, a fesearcher could listen to a tape of a problem
solution (in conjunction with observing written work, interviewer
notes, and/or a verbatim transcript) and produce a string of symbols
which represented a composite perception of the solution process.
Conversely, examination of a gtven string of symbols could be used
to provide a reasonably clear picture of what had happened during a
problem-solving episode.
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In the communication between problem solver and coder, there are

four potentially different phenomena which must be recognized:

1. What the problem solver says and/or writes.

2. What the problem solver means (is thinking).

3. How the codex interprets what is perceived.

4. How the coder matches this interpretation with a
category of behavior (symbolized).

If the anAlysis of problem-solving behavior were ideal, all four of

these phenomena would be equivalent. Since this is not the case, we
prqvide a discussion of relationehips among the phenomena. Event 1,

however, can be made invariant by keeping a record in the form of
tapes and written work. Non-equivalence between events 1 and 2 is

distortion. This can probably be reduced by maintaining an interview
atmosphere in which the subject can "get into" the problem, forgetting
the presence of the interviewer and making candid statements of thoughts

as well as he or she can. In addition, a synthesis of written work,
taped protocol, and notes made by the interviewer at the time of
observation can be helpful. The degree of equivalence between events.

2 iind 3 or events 2and 4 is not measurable, and one can only proceed
.on the assumption that event 2 can be replaced by event 1 and any non-

equivalence between events 1 and 3 can be detected by intercoder relia-
bility testing. Finally, non-equivalence between events I and 4 or 3

and 4 can be reduced by extensiire practice in Coding Therefore, taking
into account all the possible junction points in the channel of commun-
ication between problem solution by a problem solver and its final
representation by a coder, it would be erroneous to believe that a
method of behavioral analysis consisting.of thinking-aloud protocols
and symbolic coding is completely objective and valid. There is bound
to be distortion or incompleteness on the part of the subject and draw-

ing of erroneous inferences or inconsistency on the part of the coder.
However, for the purpose of examining process behavior, this system
represents a significant step in the search for improved methods. We

take note of the obvious limitations of the system and temper our
conclusions tn light of them.

Questions (a) and (b) above were directed to the matters of coder
objectivity and validity of the inst ament in representing the solution
process; question (c) is concerned with reliability. Usage of a coding

system of the kind described herein requires considerable effort on the
part of the researcher in concentration and practice. The diversity of
potential behaviors and associated symbols, subscripts, and combina-
tions requires carefully understood definitions of the behavioral
constructs, ability to recognize cues from observed behavior, and quick
recall of appropriate symbols from a memorized list. One would
naturally anticipate, therefore, problems in maintaining both internal
(to the coder) and external (among coders) consistency. Moreover, when

a coding system arises out of the work of an individual researcher, it

can be quite difficult to train other coders to have the same perception
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of various situations, and intercoder reliability suffers. This

problem is at least partially resolved by producing a coding system
through discussion and interaction of a group of persons familiar with
both mathematics and the psychology of mathematical reasoning. It is

precisely this feature which makes the coding system described here

unique: it was developed and tested by a team of researchers which
included several members who had previously worked with their own
individual systems and who were now sharing thir knowledge and
experience to assist in the construction of a more effective and
reliable system. The associated intercoder agreement and reliability
(to be discussed in the final section of this chapter) has obvious
implication for the feasibility of this coding system in problem-
solving research.

It is significant to note that this coding system was developed
in conjunction with a variety of teaching experiments, all of which
shared, in instructional emphasis, a common set of heuristic processes.
Therefore it was deliberately designed to be sensitive to the presence
of heuristic-oriented actions as well as other problem-solving events.
The schematic in Figure 88.1, adapted from an earlier paper by
Schoenfeld (1976), serves as an organizer of problem-solving and
heuristic behavior (see also Chapter V and Chapter X.B of this book).

Figure 8B.1 incorporates Polya's four stages: Understanding the
Problem, Devising a Plan, Carrying Out the PZan, and Looking Back (see
also Figure 10B.4). Further, it includes the dimension of Analogy as
an adjunct to problem-approach and planning heuristics. As in the
case of any model, this, is an intentional oversimplification, presented
here for the purpose of clarity and organization. .Actual human problem

solving does exhibit some or all of these characteristics, but they do
not necessarily occur in order, and are frequently in a much more com-
plex arrangement.' There often occur such phenomena as problems nested
within problems, fragmented plans, skipping back and forth from givens
to goal, dead ends with reorganized efforts, and attempts at various
points to build bridges connecting to prior information.

The production of a Useful Formulation, Schematic Solution, Tenta-
tive Solution, and Verified Solution suggests these as various points
at which problem-solving performance can be measured. Such measurement

focuses more on the process aspect of mathematical problem solving than
on conventional measures of time, errors, difficulty, and final outcome

(result).

Within each stage of the model, heuristic behaviors which
generally characterize that stage are listed. Questions and sugges-

tions such as

...draw a diagram...can you restate the problem in your
own words?...can you find a related problem?...look for
patterns...can you reduce the problem to a simpler case?
...separate conditions...is there any symmetry?...check
your steps...try to derive the result differently...

what if?...

374
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Figure S11.1 Heurietic Problem Solving Model (Adapted fivm Schoenfeld, 1976)_

Y'

iven Problem

ANALYSIS (GENERATE IDEAS)
Understand problem
Separate; summarize information

Classify problem
Simplify problem
Reformulate problem
Restate; chunk

Model problem; Change
representation
Figurative, schematic, algebraic

DESIGN (PLAN)
Decompose into subproblems
Work backward; Work forward
Search for a pattern (Induction)
Apprtaximate; Guess and test
Separate conditions; Focus on one
at a time

Manipulate variables -
Exploit symmetry

ANALOGY (EXPLORE; CREATE; RECALL
SIMILAR SITUATIONS)

Search for related problems
Search for applicable
theorems

Transform problem
Reduce; Relax conditions;
Generalize; Modify
representation; Auxiliary
elemefits

Expand, problem
Inferences to prior
information

Create suitable subgoals

(Schematic Solution

IMPLEMENTATION (CARRY OUT PLAN)
Develop stepwise
Verify locally
Analyze errors

:!-e-s--0-1:;7,;)(
VERIFICATION (LOOKING RACK)

Verify globally
Check result
Check method
Outline; Condense; Summarize;
Study solution

Devise alternate solutions
Refine solution; Search for elegance
Invent related problem; "What if ...
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are generally recognized as cues for heuristic behavior.

According to Folya, a major goal in teaching mathematical prob-

lem solving is to make these questions and suggestions an integral part
of the problem-solving repertoire of the learner. Then a technique
(self-questioning) is available for cueing ideas, rafher than rushing
headlong into the problem without a plan, or-creating an impasse.
This goal of mathematics teaching is closely related to certain aims
of the problem-solving researcher. SoMe of these are: (1) to see if
such processes exist within and across subjects and-problems, (2) to
examine the relationship between their presence and successful problem
solving, and (3) to suggest conditions for teaching and learning such
behavior. It is necessary, therefore, that the rpsearcher be equipped
with a system which has the capability of recording the nature and
frequency of heuristic actions, their sequence in relation to other
processes, and judgments about intermediate and terminal outcomes.
With such an instrument, researchers or teams can reproduce a composite
picture of the problem solution for careful and detailed analysis.

Mathematical problem solving is like the action of a machine--the
input and output are clearly visib/e, but one does not really develop
a full appreciation for the machine until one has had a look inside to
see how it works. The system described next represents an attempt to
define some of the "internal moving parts" of the problem solver.

2. Code Symbols and Definitions

The code symbols which are presented and defified in this section
represent a consensus of agreement among six researchers with respect
to processes and phenomena that are likely to occur during mathematical
problem solving. They were derived from observational data gathered
from subjects of varying developmental levels and ranging in age from
10 to 27 years.

The coding system evolved organically through observation of
problem-solving behavior during initial pilot work. Although some
a priors assumptions about heuristic behavior may be made, a given
problem solution may involve complexities that do not conform to a
predetermined formal ordering or expected structure.

In the present system, observed behavior is coded in its order
of explicit appearance, and the coder makes judgments on the separa-
tion or clustering of processes from his or her perception of the
natural "pulse" of the problem solution. For example, the problem
solver may assert a plan or fragment thereof, perform some action or
sequence of actions to carry out the plan fully or partially, and .

pause to evaluate the consequences of the actions in relation to the
plan, and/or the goal of that step, of the entire problem, or of some
subproblem. In the view of the coder, this brief sequence of
behaviors would constitute one step in the sense that symbols for

3 76
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planning, execution process, and outcome would be placed in juxtaposi-

tion as one cluster, separated by commas from those referring to prior

or subsequent behaviors. For example, the cluster of symbols "...,
PiDa5E4, ..." refers to the following sequence of behaviors:

A plan for an intermediate goal (Pi), a deduction drawn
from one piece of information (Da) in a forward orienta-
tion from given information toward a goal (subscript 5),
the production of an equation (E), and an outcome of the
step in the form of correct intermediate result (4).

In several instances, variations among closely related behaviors

are coded by using the same symbol but different subscripts. For

example, "Da" codes a deduction drawn from one piece of information
(analysis) while "Ds" codes a deduction drawn from several pieces of

information (synthesis). Also, processes that incorporate heuristic
orientation are coded by using a process symbol for the behavior
together with a numerical subscript referent to the list of fourteen
commonly agreed-upon heuristic processes (see Table 83.1). For

example, "Da.5" codes analytic deduction in a forward orientation--
working in the direction from given or derived information toward
the goal (e.g., asking "What am I to deduce from this?"), whereas

"Dae codes analytic deduction in a backward orientation--working in
the direction from the goal toward given or derived information (e.g.,

asking "To obtain this result, what do I need to have?").

The preceding comments were intended to serve as examples illus-

trating the general nature of the code so that the reader might
develop some feeling for the system prior to its introduction. A
more thorough explanation with application to the analysis of a

complete problem solution appears in the next section. The dictionary
of code symbols and associated behaviors is given in Table 83.2. All

behavior is required to be explicit; otherwise, it is not coded.

Introduction of a coding system requires the use of a dictionary
such as the one given in Table 83.2 to define the meaning or inter-
pretation of each symbol. However, it is difficult to appreciate
the value of a system of communication by studying only from a
dictionary--one obtains but a fractured view of 'little pieces" of

behavior. By using clusters of symbols to describe brief sequences
of behavior, the system can be demonstrated in a more meaningful way,
and finally, when these clusers are linked in horizontal strings to
represent an entire problem solution, the utility of the system comes

into full view. The next section is devoted entirely to a demon-
stration of how this ,:oding system can be used to record a mathe-

matical problem solution.
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Table 8B.1 List of Heuristic Processes (with Code Numbers)

3

Draw a diagram (figure, schematic, table)..

Test special cases.

Identify what is wanted and what is given.

4 Identify relevant or irrelevant data.

Examine all the given information.

5 Work forward from what is given.

6 Work backward from the coiiclusion.

7 Search for a pattern. Find a generalization.

8 Search for a related problem (emphasis on

similar structure).

9 Search for an applicable theorem,

definition, operation or algorithm.

10 Solve part of the proll-m

11 Check the solution

12 Is there another wa-, to get the result?

(alternate solutions)

13 Is there another result that could be obtained?

(uniqueness)

14 Study the solution process.
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3. Illustrative Applications of the Coding System

Cb

Sample Analyses of Problem-Solving Behavior

Several brief sequences of observed behavior appear below together

with associated code clusters. Note that numerals representing heuris-
tic processes appear as subscripts in the coding, while numerals which

are outcome symbols are in line with the alphabetic symbols.

Sequence A: The problem solver reads the problem, hesitates, rereads
part of the problem, says the problem resembles another
problem and he will try to use the same method, then
deduces correctly a piece of information from one of the
given data.

Code A: R, R, L8 Pi Da54,

Sequence B: During a problem solution, the problem solver says "to
obtain the area of the circle, I need to find out what
the radius is...how can I find the radius?" He then

uses two points and applies the distance formula (an
algorithmic calculation, but a mechanical error is made
in the process) to arrive at an incorrect number for the
radius of the circle,

Code B: P
i
Ph.D

s6
A5

'

Seqvnce C: During a problem solution, the problem solver is search-
ing for a pattern among the triangular numbers--testing
three or four cases, then making a (correct) generaliza-
tion. Next the subject decides to check one more
special case as a test of the generalization.

Code C: T7, ..., 14, C11,

Sequence D: The problem solver reads the problem, separates given
information into three key conditions, states the inten-
tion to consider each condition separately, proceeds to
translate the first condition into an inequality
(correctly), focuses on the second condition but trans-
lates it incorrectly into an equation, checks back,
discusses and corrects the error ...

Code D: R, S P D E4, D 15,
p10 al0 al0

C
11'
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Table 8B12 Dictionary

Reads all or part of problem statement

Separates/summarizes information

S3 Separates wanted from given information

S4 Identifies relevant and/or irrelevant information

Restates problem in other words or in another way

Fdl Draws diagram, makes table, constructs schematic array
, (represents problem information in visual form)

Fd10 Using diagram(s) solves part of problem to exclusion of
other parts

Fa Adds auxiliary construction (used with geometric representation)

States plan

Suggests plan for final goal (goal orientation)

Pi Suggests plan for intermediate goal (Subgoal-orientation)

PP10
States inteation to solve part of the problem - part of larger,
goal-oriented plan

Pilo
States intention to solve part of problem without reference to
goal-oriented plan

States new goal or new subgoal

Ut States theorem used

U0 3tates operation carried out

Suggests needed information which could be helpful but is not

apparently available

Da Makes deductive inference drawn from one piece of information,
given or derived (analysis of information)

Da5 Da with forward orientation (working forward from initial or
derived state toward subgoal or goal state)

Da with backward orientation (working backwards from goal or
subgoal toward derived or initial state)

Da6

Dal0 Da with emphasis on one part of the problem to the exclusion
of others (e.g. imposing one condition at a time and exam-
ining variation in result)

Ds Making deductive inference drawn from several pieces of infor-
mation given or derived (synthesis of information)

Ds5 Ds with forward orientation

D56 Ds with backward orientation

Dsio Ds with emphasis on one part of the problem to the exclusion
of others

0 Using information in different way than originally given; renaming

States a generalization (inductive conclusion; conjecture)

Trial and error; successive approximation

T2 Tests special case(s) as trial(s) to examine problem structure

(not aimed at induction) 1380
+,



Table BM (continued)

T7

-363-

Tests special case(s) as trial(s) which form part of a pattern-

search (aimed at induction)

V Introduces variable or other notation

Introduces equation

A Uses algorithm as routine calculAtion or technique

Reasons by analogy (notes similarity with another situation)

L8 Recalls method of related problem or states related problem
and uses its method

L9 Recalls and states related definition, theorem, or problem;

cli

or does same and uses result

Checks solution to problem or subproblem

Ca12 Attempts alternate solution process

Cs12 Attempts to simplify, condense solution or search for more
elegant solution

Cn Suggests new problem

X Has forgotten or does not know how to solve problem

B13 Searches for additional results that could be obtained

1314 Studies the soytion

Outcome Symbols

1 Abandons process
2 at impasse
3 Produces correct final result
4 Produces correct intermediate result
5 Produces incorrect result (final or intermediate)

Question Symbols

Subject asks investigaxor question
Investigator asks subject question
Subject asks self question

Error Symbols r
Structural error (misuse of information)

4, Executive error (mechanical slip)
Over error symbol means error has been corrected explicitly
Underline process symbol means difficulty with that process

Punctuation Symbols

Inserted between successive ,;teps
End,mark; stops without solution
End mark; stops with solution
Iterated process (same process as last has been repeated
at least once more)

Encircled process symbol means that ?rocess is exact
repetition of some earlier proces:
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Sequence E: Near the end of a frustrating problem episode, the
problem solver is engaged in a series of trials, each
using a new diagram which is not the solution but
provides information which could potentiilly leaa to
the solution. The last trial leads to an impasse;
the problem solver searches.for an alternate way to
do the problem but abandons his attempt, says he
does not know how to solve the problem and gives up
without the solution.

Code E: T F d14
'

TF
d12 '

C
al2

1
' '

Analysis of a Problem-Solving Protocol

The remainder of this section is devoted to a single problem
solution executed by an adult subject in one of the individual
studies leading to the production of this system. The solution will
be presented here in three modes. These modes are: (1) a verbatim

transcript taken directly from the audiotaped protocol of the solu-
tion, (2) an analysis of various segments of the verbatim transcript
where code symbols and brief interpretations corresponding to these
segments are provided, and (3) the representation of the entire
problem solution using only horizontal strings of code symbols.

Verbatim Transcript

83.1 Two girls were selling candy. They had a dollar and seven
cents in change to begin with. Their first customer said
that before he could buy anything, he needed change for a
half dollar. One of the girls looked into the change box
and saizi they didn't have the change. The customer asked
if they had change far a quarter; the reply was no. The
customer asked if they had change for a dime; the answer
was no again. The girZs said that they had seven coins in
all but could not change a nickel either. What were the

coins that the girls had?

OK, uh, the second last sentence came to my eye right away--
it says the girls said that they had seven coins in pll but
could not change a nickel either... ah, which means they
have no pennies, theoretically.

What were the coins that the girls had? OK, they've got
seven coins in all.,.uhmm... OK, then I'm, I'm reading
backwards--they had no change for a nickel which says...
oo pennies... ah, the customet. asked if they had change
for a dime, th answer was no, which means they'd have to
have no nickels...cuctomer has...ask if they had change
for a quarter...and the reply was no... Now, that doesn't
necessarily rule out dimes, because they could have dimes
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...and just'dimes, and then not be able to make change for
the quarter, so it doesn't necessarily rule out dimes...
because they could have dimes and still not make change
for a quarter.

Needed change for a half-dollar... OK, assuming he's got
dimes.., assuming they have dimes... OK, if you want
change for a half dollar you could have two quarters, or
else five dimes--now they could have dimes and they could
have quarters... but one thing they could not have, they
could not have five.dimes....and you could not have two
quarters...

So, if "451-t-ePresents...the number of dimes, d cannot
equal Ave at this point, and if "q"(represents the number
of quarters, q could not equal two. \

All right, they had dollar and seven cents in change to
begin with, OK,' to get the dollar and seven cents, they're
gonna have to have some pennies involved...and they..:,, let

"p" represent pennies,....and p would have to equal two,
or p could equal seven. OK, now, seven has to be ruled
out, because they only had seven coins in all, and if they
only had seven pennies, all right,
their coins and they certainly woul
seven cents. So, they got two pen
down to a dollar and five cents, a

ac would take up all
not have a dollar and
es, and that puts us
with...five coins.

OK, five coins, dollar and five cents, ihm...and they have
no nickels, they have absolutely no nickels...letts.see...
three quarters, that's seventy-five, and two dimes will
only make it ninety-five--I'm short a dime...

All right, let's just try some possibilities, how about
four quarters, ...uhm, ...one nickel, and two pennies...
OK, I started Ehe wrong way, I should have worked down..,.
I should have started with the dollar and seven cents and
said they'd have to have either seven or two pennies and
then eliminate the seven cents right away and made it a
simpler problem by saying a dollar and five cents and five
pennies, or, and five coins. OK, if they had four quarters,
ne nickel, and two pennies; let's see if these conditions
atisfy the conditions of the problem. He needed change
pr a half-dollar...now if he had, if they had four guar-
Ears, they could theoretically give him change for a half

Aollar...if that's what is meant by change...can I ask
you that? [Interviewer...uh-huh]...Would two quarters"

be reasonable to say change for a half-dollar? [Inter-

viewer...right] .0K, so the four quarters would be ruled out
...'cause if they had four quarters', they could change a
half-dollar, so that option is ruled out.). [Interviewer
...could you say what you were thinking about now?]
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Well, I'm just looking at the dollar and seven cents, and
to get that dollar and seven cents, there's no other way
about it except that they could have two pennies or seven
pennies...and they can't have seven pennies, so they gotta
have two pennies...

So, the problem is really now a dollar and five cents with
five coins, and one of my options did not work...

OK, ...OK, I'm just trying one quarter now...that'll leave
me with eighty cents, and four coins...that would be four

twenty-cent pieces and they don't make those things yet...

A dollar and five cents with five coins...there can't be
any nickels...well, maybe there's two nickels... Ah, these
dumb problems!. Well, if they didn't have change for a
quarter, and they only got two pennies there, there cannot N
be any nickels...and the same reasoning if they didn't
have change for a dime...uhm... Am I interpreting the
problem right that they have exactly seven coins to start
with and they total to a dollar and seven cents? OK [Inter-

viewer...uh-huh]

OK, so now, there cannot, there's two pennies and there are
no nickels...or there could be one n_zkel and no dimes, and
one dime--what if I have one nickel and one dime, that's a
possibility because that still would not 'give them enough...
change for a quarter...OK, that takes up...uh'...fifteen
cents, leaves me ninety cents with three coins...a half
dollar,... OK, half-dollar...what if they had two half-
dollars? One half dollar, one quarter...I'm just trying
combinations...seems to be the best bet right now...I'm
trying to find combinations that give me five coins 'n
dollar ana five cents. A half-dollar and one quarter, that's
seventy-five cents and I've got...three coins left... OK,
there it is...three dimes and two pennies, obviously...trial
and error.

Just checking it out...fifty, seventy-five, three would be
a dollar-five, a dollar-seven. Probably should have anal-
yzed it something with algebra, but I didn't...OK?

Segmented Analysis of the Problem Solution

rProblem Two...Two girls were selling candy. They
had a dollar and seven cents in change to begin
with. Their first customer said that before he
could buy anything, he needed change for a half
dollar. One of the girls looked into the change
box and said they didn't have the change. The

customer asked if they had change for a quarter;
the reply was.no. The customer asked if they had
change for a dime; the answer was no again. The
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,s4,
(identifies
relevant data

71)a55,

(deduction by
analysis;forward;
structural error;
outcomeincorrect)

1110
(reads pert;
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deduction by
analysis; forward;
structural error;
outcome incorrect)

i*a5 5,

(reads part;
deduction by anal-
ysis; forward;
structural error;
outcome incorrect)

,RD
a5

4,

(reads part;
deduction by
analysis; forward
outcome correct)

D
a5

4
'

(deduction by
analysis;forward;
outcome correct)

,RDa54,

(reads part;
deduction by
analysis;forward;
outcome correct)
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girls said that they had seven coins in all
but could not change a nickel either. What

were the coins that the girls had?

OK, uh, the second last sentence came to my eye
right away--it says the girls said that they
had seven coins in all but could not change a
nickel either...

ah, which means they have no pennies,
theoretically.

What were the coins that the girls had? OK,

they've got seven coins in all...uhmm... OK,
then I'm, I'm reading backwards--they had no
change for a nickel which says...no pennies...

ah, the customer asked if they had change
for a dime, the answer was no, which means
they'd have to have no nickels...

...customer has...ask if they had change for a
quarter...and the reply was no... Now, that
doesn't necessarily rule out dimes, because
they could have dimes...and just dimes, and
then not be able to make change for the quarter;

so it doesn't necessarily rule out dimes...
because they could have dimes and still not
make change for a quarter.

Needed change for a half-dollar... OK, assualing
he's got dimes...assuming they have dimes... OK
if you want change for a half dollar you could
have two quarters, or else five dimes--now they
could have dimes and they could have quarters-...
but one thing they could not have, they could
not have five dimes..,and you could not have
two quarters...

Stip
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[I

So, if "d" represents...the number of dimes, d
cannot equal five at this point, and if "q"
represents the number of quarters, q could noE
equal two.

[I

All right, they hai dollar and seven cents in
change to begin with, OK, to get the dollar
and seven cents, they're gonna have to have
some pennies involved...and they...

D
s5

4

(deduction by
synthesis; forward:
outcome correct)

,G4,

(establishes a
subgoal, or new
goal; outcome
correct)

...let "p" represent pennies...and p wvuld
have to equal two, or p could equal seven.

OK, now, seven has to be ruled out, because.
they only had seven coins in all, and if they
only had seven pennies, all right, that would
take up all their coins and they certainly
would not have a dollar and seven cents.

(summarizes
information)

,T4,

(trial combina-
tion; outcome is
not incorrect,
furnishes infor-
mation about goal)

,PT1,

(states a plan
without reference
to an expected
outcome; startsa
trial, but abandons)

So, they got two pennies, and that puts us
down to a dollar and five cents, ah, with...
five coins.

OK, five coins, dollar and five cents, ahm...
and they have no nickels, they have absolutely
no nickels...

[I

...let's see...three quarters, that's seventy-
five, and two dimes will only make it ninety-
fiveI'm short a dime...

[I

All right, let's just try some possibilities,
how about four quarters...uhm...one nickel,
and two pennies...
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(looks back,
condenses,
simplifies,
outcome correct)

,T?4,

(trial combina-
tion; J5 asks E.

question; outcome
incorrect, but
furnishes infor-
mation about goal)

(E asks S
questionT
S,

[I

OK, I started the wrong way, I should have worked
down...I should have started with the dollar and
seven cents and said they'd have to have either
seven or two pennies and then eliminate the seven
cents right away and made it a simpler problem by

saying a dollar and five cents and five pennies,
or, and five coins.

OK, if they had four quarters, one nickel, and two
pennies; let's see if these conditions satisfy
the conditions of the problem. He needed change

. for a half-dollar...now If he had, if they had
four quarters, they craild theoretically give him
change for a half doliar...if that's what is meant
by change...can I ask you that? [Interviewer:

uh-huh] Would two quarters be reasonable to say
change for a half-d-011ar? [Interviewer: right]

OK, so the four quarters would be ruled out...
1 cause if they had four quarters, they could
change a half-dollar, so that option is ruled out.. .

,

[I

[Interviewer: Could you say what you were think-
ing about now?]

(looks back,
simplifies)

,T2,

(trial combina-
tion; has
difficulty,
hesitations,
leads to impasse)

s.5
4

'

(deduction by
synthesis; for-
ward; outCome
correct)

'1

(S asks E,
question

,

[i

Well, I'm just looking at the dollar and seven
cents, and to get the dollar and seven cents,
there's no other way about it except that they
could have two pennies or.seven pdnnies...and
they can't have seven pennies, so they gotta
have two pennies...

[I

So, the problem is really now a dollar and five
cents with five coins, and one of my options did
not work...

OK...0K, I'm just trying one quarter now...that'll
leave me with eighty', cents, and four coins..that
would be four twenty-cent pieces and they don't
make those things yet... A dollar and five cents
with five coins...there can't be any nickels...
well, maybe there's two nickels... Ah, these
dumb problems:...

i

,

Well, if they didn't have change for a quarter,
and they only got two pennies there, there cannot
be any nickels...and the same reasoning if they

[
didn't have change for a dime...uhm...

Am'I interpreting the problem right that they have
exactly seven coins to start with and they total
to a dollar and seven cents? OK [Interviewer: uh-huh)
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(trial on half-
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obtains correct
solution to
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C
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.
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against condi-
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OK, so now, there cannot, there's two pennies
and there are no nickels...or there could be
one nickel and MD dimes.

and one dime--what if I have one nickel and
one dime?...that's a possibility because that
still would not give them eaough, change for a
quarter... OK, fhat takes up, uh...fifteen
cents, leaves me ninety cents with three coins
L..a half-dollar...

[5:, half-dollar...what if they had two half-
dollars?

one half-dollar, one quarter...I'm just trying
combinations...seems to be the best bet right
now...I'm trying to find combinations that give
me five coins 'n dollar and five cents. A half-
dollar and one quarter, that's seventy-five cents
and I've got...three coins left... OK, there it
is...three dimep.and two pennies, obviously...
trial and error...

Just checking A out...fifty, seventy-five,
three would be a dollar-five, a dollar-seven.
Probably should have analyzed it something with
algebra, but I didn't...OK?

Horizontal Coding Display

D
a5

5
'

VDa5 4 D 4 , G4 ,

Ds54,
Cs124'

I?,

RD
a5

5
'

RD
a

T4, PT1,
s 2

Da54, RD54, V, RDa 4

T?4, S,

?, S, Te-1, TS3,

The above problem solution took approximately ten minutes. However,

the analysis and coding obviously required several hours. The method is
quite demanding on the investigator. But there is a payoff, for the
investigator has an opportunity to observe the process of problem solv-
ing during its evolution. Information about the nature and frequency
of heuristic processes and even more importantly the effectiveness of
their application and their sequence in terms of problem-solving per-
formance becomes clearer. One can examine such phenomena as the
relationship between goal-oriented planning and the appearance of key
heuristic processes, the interplay between backward and forward reason-
ing, the motivation for internal and/or terminal checking, the corres-
pondence between modes of representation, the nature and frequency of

8y8
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errors, the self-questions which evoke recognition of structural
similarities between problems, the variation between problem-solving
styles, and much more.

To illustrate some of these possibilities, consider the follow-
ing examples. Goal-oriented planning is symbolized by P or 114.

Heuristic processes such as deduction (Ds), pattern-search (T7r, or

general trial-and-error (T) are key processes in the production of
solutions. Suppose a given problem solver's codes across a variety
of problems frequently exhibited clusters of the form P D8E4 near the
beginning of each problem, followed by clusters involving Da or Ds,

but rarely, if ever, T7 or'T. This might suggest an organized deduc-
tive style, more formal than the "guess-and-test" orientation indicated
by successive T's. Moreover, if the deductive pattern were frequently
associated with the outcome symbols "1," "2," or "5," this might hint
at an attitudinal characteristic (inflexibility) of the problem solver,
perhaps an insistence that the "right" way to solve problems is via
a combination of straightforward deduction (Ds), the production of
equations (Ei) or expressions, and -.Jtilization of algorithms (A).

As another example, some problem solvers verbalize a rather
complete plan at the outset of a problem solution; others almost
never verbalize a plan; while for still others, the planning evolves
in stages as the solution unfolds. These characteristics may be
suggested by the presence, absence, and/or placement of planning
symbols (P). An analogous phenomenon exists with backward and

forward reasoning (D55, Ds6). Some problem solvers have a preference
for one or the other, while others vacillate from one to the other
during the solution. Still another analogouS situation exists with
checking (C 11)- Some check internally after each °step," sow' check
only at the end of the problem, and others do not check at all.

Is there a relationship between the structure of a problem and
the principal strategies used to solve it? For example, do "induc-
tion" problems tend to evoke pattern-search (T7) and generalization
(I)? Is the generalization usually verified (C11, Ca12, C512)? Are
some problems, because of their structure or the nature of the ques-

tion asked, more easily solved by working backward (D55) than by
working forward (D55)? Questions like these may have some light shed
on them by comparing coding strings within certain problems and across

problem solvers. Similarly, developmental differences in problem-
solving style, strategy, or presence of heuristics may be uncovered
by examining coding strings for the same problem across subjects
within and across developmental levels.

Finally, if a student learns to ask heuristic-oriented questions
of himself or herself during a problem solution (self-dialogue), is
there any effect on the production of "creative" ideas or the connec-
tion with related problems? To investigate this question, the
researcher might look into the codes for contiguous occurrences of

or c,Pp, or followed by a major production heuristic (Ds, Da
T, I, Cu (error-search)).

389
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As noted in the above examples, a process-sequence coding system
can be a microscope through which we observe certain overt facets of
the problem-solving process and gather a wealth of information.
However, we must be certain, within reasonable limits of error, that
different observers are seeing the same behaviors and interpreting
them similarly. This raises the question of reliability, which is
discussed next.

4. Reliabiliry of the Coding System

The process-sequence code obtained from a problem--solving episode
cannot avoid, at least to some degree, being a function of how an
observer interprets a transcript or tape of the episode. This raises
an important question. To what extent will trained coders, using the
coding system described, differ in their coding of the same problem-
solving episode? In an attempt to answer this question, the investi-
gators devised a procedure for comparing the process-sequence codes
produced by two coders from the same transzript. That procedure, its
rationale, and a test by cross-comparison of the codes of four
investigators will be described in this section. The reader should
note that these results are preliminary, and that refinements of the
coding system and greater experience with it should improve the pre-
sent reliability.

In considering direct comparisons between different codings of the
same problem-solving episode, the investigators found that it would be
extremely difficult to proceed via a symbol-by-symbel approach. For
example, suppose the transcript shows a subject repeating verbatim two
consecutive sentences in a problem statement. It seems most reasonable
to infer that part of the problem is being read, and this would be Loded
as "R." But what if the subject repeats verbatim a key phrase consisting
of ten words from the original statement of the problem? Is this behavior
rereading a portion of the problem (to be coded "R"), or is it recalling
relevant data from memory (to be coded "S")? Either interpretation
might be admissible.

As a first approach to resolve this ambiguity of interpretation,
the investigators decided to group the coding symbols into "clusters,"
with each cluster containing closely related process symbols, and with
disagreements within a cluster not being counted in coding comparisons.
Thus, in the example just cited, the codes "R" (for reading) and "S"
(for recalling) would be assigned to the same cluster, so that the
disagreement hypothesized above would not be counted as such. In other
words, subtle differences arising in the microscopic system tend to dis-
appear as the system becomes more macroscopic, while the internal validity
of the system remains generally intact.

To facilitate the counting of disagreements between coders, each
cluster was assigned a Greek letter. The original process-sequence code
for an episode, using Latin letters, could then be translated into a new
code of Greek letters, in which disagreements would be counted as "true"
disagreements in the sense of representing different process clusters.
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Table 88.3 shows the assignment of process-sequence codes to
clusters, and also the Greek codes assigned to each cluster. For

more specific information about the detailed processes within a
cluster, the reader is directed to the Dictionary (Table 8B.2).

In addition to clustering coding symbols, the investigators
agreed on certain other procedures to be followed in the coding of
common transcripts for intercoder comparison. For each episode,
each coder was provided with a copy of the audiotape of the episode,
a copy of the verbatim transcript of the tape, and a copy of the

subject's worksheet. To facilitate symbol-by-symbol comparisons,
the transcript was arbitrarily divided into segments of approxi-
mately equal length. This was accomplished by counting and marking
off a certain number of lines for each segment on the typed trans-
cript. These segments were numbered sequentially. If a process
overlapped two or more segments, it was coded as though it were
contained in the last of the overlapped segments. For example, if
a subject began a trial as part of a pattern search in Segment 9
and complet.2d the trial correctly in Segment 11, the (Latin) coding
would be:

Segment coding.

10 =I!

11 T74

As this example illustrates, it is possible for a segment to produce

no code.

In translating from the original (Latin) coding to the clustered
,(Greek) coding, repetitions in the Greek code sequence within a seg-
ment may occur. If in a segment, for instance, a subject read part
of the problem and then restated it in his or her own words, the Latir
code sequence would be "R, Q." The clustered code corresponding to

this is "au." For the sake of simplicity, it was decided that repe-
titions of the Greek code would be collapsed. Therefore, in the
latter example, the resulting Greek code was

Symbols other than alphabetic process symbols (e.g., outcome,
questions, error, and punctuation) were ignored in translating to
the Greek code. Thus the sequence

?,TFd14,Ds53

was translated into Greek code as "0

Once the translation from the microscopic Latin to the macro-
scopic Greek code was accomplished, the next task dealt with the
assignment of a numerical coefficient of agreement for a given pair
of Greek codings. It was decided that a percentage of agreement
would be determined for each segment, and that these indices would
be averaged across all segments to obtain a coefficient for the entire
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Table 8B.3 Clueter Definitions

Cluster Code Latin Correuonients Description

a Ft, S S3, S4, Q

F
dl,

F
d109

F
a

Analysis: Read,
Summarize, Recall,
Restate, Separate

Modeling Processes;
Figurative;
Visualization

P, Pp, Pi, Pp10, Pi10, Planning Pr(cesses:
Goal-Oriented

G, Da6, Ds6

6 L, L8, L9, Ut, Uo, 0 Analogy: Processes
Involving External
Irformation

Da, Ds, Da5, Da5,

Is Da10, Ds10

T, T2, T7

Production Processes;
Forward-Oriented

Trial-Oriented
Processes;
Specialization;
Pattern-Search

V, E Symbol-Introducing
Processes

C11, Ca12, Cs12,

Cn, B13, 1314

Looking Back Pro-
cesses; Checking,
Studying

A A Algorithmic Process

X X Stops Work: Impasse
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episode. Clearly, if one coder coded a given segment as "a w y e" and
another had "a e y e," then the agreement for the episode should be

.75. But what if one coder had "w y," while another had "w y e"? Smith

and Meux (1962) faced this problem in their coding of classroom
behavior. They used an index

A(x,y)
P 7 max(s(x),s(y))

where A(x,y) represents the number of agreements in the two codings,
and Max(S(x),S(y)) represents the greater of the number of code symbols
used by the two coders. Using this convention, the agreement between
the two coders for the example just given would be

p 2/3 .67

For the present work, the investigators decided to use the following
modification of the formula:

A(x,y)
P Ave(S(x),S(y))

where Ave(S(x),S(y)) represents the average of the number of code
symbols used by the two coders, and A(x,y) is the number of agree-
ments. Thus in the example given,

p 2/((24-3)/2) = .8

In examining several transcripts where coders disagreed on the number
of symbols to be used, it was decided that Ave(S(x),S(Y)) was a better
index of agreement (or disagreement) than Max(S(x),S(y)).

Since individual segments were relatively short and occasionally
contained behaviors which appeared to occur simultaneously, the inves-
tigators felt that the focus of concern for a given segment ought to
be what processes occurred therein, not the order of those processes
within the segment. Therefore, order was ignored in determining the
number of agreements between two codings. It should be noted that
such permutations were rarely observed (only two pairs of codings
differed in order). Hence for the two codings "e a w" and "w e
A(x,y) 3 and p = 1.00.

Table 88.4 shows two codings by different coders of tae same
episode with the index of agreement corresponding to each segment.
The overall agreement between coders for this episode (the average
of intercoder agreements for the fourteen segments) was 0.78.

Four of the investigators were recruited to participate in the
test of intercoder agreement. For each problem-solving.episode, six
coefficients of agreement were calculated, one for each of the
possible pairings of the four coders. Four problem-solving episodes
were used in these comparisons, and each of the investigators coded

all four episodes. The coefficients of agreement are exhibited in Table 8B. 5 .

3,93
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Table 88.4

Serent

Intercoder Agreement (Tido

Code

Coders)

Coder 2
Agreement

IndexCoder 1

1 a ct 1.ol

2 a 6 ct 6 1.00

3 1.00.

4 8 1.00

5 Y E .67

6 1.00

7 0 1.00
8 a 1.00
9 1.00

10 cc

11 6

12 8 e v .50

13 WY w y v .80

14 A A 1.00

Coder pair average
.78

394
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Table 88.5 Coefficients of Agreement, Coder Pair x Episode

Coder Pair

Coder Coefficient of Agreement for Episode Average

Pair 1 2 3 4 (4 episodes)

A-B .83 .81 .76 .80 .80

A-C .28 .76 .76 .51 .58 .

A-D .60 .62 .78 .36 .59

B-C .28 .67 .87 .50 .58

B-D .57 .51 .63 .33 .51

C-D .30 .63 .63 .52 .52
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It is clearly evident from Table 8B.5 that one pair of coders--

pair A-B--is consistently more in agreement than the other

pairs. In three of the four episode codings, the A-B cbefficient of

agreement is the highest. The average coefficient of agreement for
coder pair A-B over all four episaes exceeds the next highest coder

pair average by 0.20--a large margin. .It is significant that coders

A and B had had more extensive practice using the coding system than

cociers C and D, and also that their previoqA work had involved ttie .

development and utilization of process-sequence coding. Moreover,

during the development of this coding system, CoderS A.and B provided
input and discussion about the difficulties and nuances of coding.
It appears that intensive practice with the coding system involving

research associates who are knowledgeable in mathematics and the
psychology of mathematical reasoning is a necessary condition for
high intercoder agreement.

While coder pair A-B reflected the greatest consistency,-it
should be noted that many of the other coefficients of agreement
are also reasonable. Indeed, the highest coefficient of agreement
in the data is the B-C index on Episode 3. A further look at the
data suggests that much of the disagreement arises on Episodes 1
and 4, and that the overall agreement on Episodes 2 and 3 is rather

good. The averages of all coder pairs for Episodes 2 and 3 are 0.67

and 0.74, respectively, while those for Episodes 1 and 4 are 0.48

and 0.50.

Agreements to the extent indicated are modest but optimistic
for process-sequence coding of complex problem-solving behavior.
Some were higher than the investigators had expected, but most
reflected a need for intensive practice and discussion. One of

the future goals of this research team is continued practice and
dialogue aimed at improved systems for reporting and interpreting
problem-solving processes.

There are many unexplored questions in research on the process
of mathematical problem solving. To assist in this exploration,
researchers need tools and instruments,which enable them to organize
observations of complex processes. The coding system giVen here is
an interim attempt at such instrumentation. It is hoped that it is
one step toward a meaningful connection between clinical research in
mathematics education and the teaching of mathematics in the class-

room.

3 is
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Syntax, Content, and Context Variables in Instruition

by

Janet H. Caldwell
Research for Better Schools, Inc.

Philadelphia, Pennsylvania

Task variables.can be of use to the mathematics teacher as well as
to the researcher. By examining the types of variables describing a
problem task, the teacher can more clearly separate those effects which
are due to the nature of the task itself from those due to other sources
of variation. An analysis of the task variables pertaining to problems
used in instruction helps teachers to be more effective in foreseeing
difficulties, and in designing instruction to overcome these difficul-
ties.

Task variables can also be of use to the textbook author and
publisher in designing instruction in problem solving. For example,
-in most textbooks, word problems in an assignment are most often solved
in the same way. ,Stpdents seldom have an opportunity to solve a*variety
of problems; they can generally find the method for solving any problem
by looking back a few pages. Analyzing task variables can help text-
book authors and publishers to provide more Variety and thus to provide
more effective curriculum.

Two categories of task variables are discussed in this chapter:
syntax task variables and content/context task variables. The uses of
task variables in the classroom will be explored by considering how to
design problems of varying difficulty levels, how to use task variables
to create problems of isomorphic mathematical structure with varying
syntax, content, and context, and how to use task variables in planning
a unit.

1. Syntax, Content, and Context Variables as
Indicators of Problem Difficulty'

Some of the task variables affecting problem difficulty are out-
lined in Table 9.1. It is important for the teacher to recognize these
variables for two purposes: (a) to identify the difficulty lev,01 and
the reasons for the difficulty level of a given problem or set of prob-
lems; and (b) to create a set of problems of a given difficulty level
where all problems are approximately equal in difficulty, or where
problems are of increasing difficulty for specific reasons. It is
also beneficial for students to be able to recognize changes in task .

-379-
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Table 9.1 SomL Task Variables Affecting Problem Difficulty

Syntax Task Variables

Length

Grammatical structure

Numerals and mathematical
symbols

Total number of words
Total number of sentences
Number of words per sentence

Number of clauses
Type of clauses
Sentence depth
Syntactic complexity

Form (numeral, symbol, word)
Magnitudes of numbers
Type (fractioa, decimal, etch)

Question sentence Placement of the question

Sequence Order of the given data

Vocabulary Difficulty level

Content Task Variables

Mathematical topic Broad and narrow subject area
classifications

Traditional "problem types" (e.g.,
rate problems, age problems)

Field of application Use of specific mathematical
relationships which are pre-
supposed

Mathematical equipment Availability and required skills

Semantic content Key words
Mathematical vocabulary

Problem elements Given,information
Goal information

(continued)
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Table 9.1 (continued)

Context Task Variables

Problem embodiments or
representations

Verbal context or setting

Symbolic, pictorial, or
manipulative

Visual, oral, or written

Familiar or unfamiliar
Applied or theoretical
Concrete or abstract
Factual or hypothetical
Conventional or imaginative

Information format Presence or absence of hints
Multiple-choice or free-answer
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variables, and to note consequent effects on the problem solution. In

this section, we will examine the effect on problem difficulty of

changes in the.task variables.

Varying Task Syntax

Syntax task variables may generally be altered without affecting
a problem's mathematical structure. Familiarity with commonly occur-
ring syntax task variables is to be encouraged; the kinds of changes
involved in altering syntax task variables can be examined and simi-
larities in the solutions of the problems can be noted.

The following problem is a familiar motion problem from first-

year algebra. It uses simple vocabulary and short sentences. There

are five sentences and 39 words (WRDNUM, as defined in Chapter II),

with an average of 7.8 words per sentence. Each sentence contains

just one main clause.

9.1(a) Two cars start at the same place. They are going
in opposite directions. The first car goes 30 miZes

per hour. The second car goes 45 miles per hour.
In how many hours will they be 150 miles apart?

The problem can be changed by varying the problem length. Lengthening
the problem may tend to increase its difficulty; adding more words to
the problem also changes some of the grammatical structures. The

following problem still has five sentences, each of which has a single
main clause, but it has 58 words (11.6 words per sentence), three more
prepositional phrases, and two more adverbs than Problem 9.1(a).

9.1(b) Two cars start at the same place at the same time.
The two cars are going in opposite directions on
a straight road. The first car goes east at 30
miles per hour. The second car goes west at 45
miles per hour. In how many hours will the two
cars be 150 miles away from each other?

The problem can also be altered by combining sentences. This
tends to increase the problem difficulty, primarily because it pro-
duces a concomitant change in readability.

9.1(c) Two cars going in opposite directions start at the
same place. The first car goes 30 miles per hour,
while the second car goes 45 miles per hour. In
how many hours will they be 150 miles apart?

This problem has 38 words, but only three sentences; the average sen-
tence length, 12.7, is thus higher th:an in Problem 9.1(a). There are
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four main clauses, one compound sentence, and one participial phrase.
The sentence depth and syntactic complexity are thus higher.

The problem can also be varied by using more difficult vocabu-
lary. The following problem has five sentences, each containing one
main claUse, 39 words, and the same grammatical structure as Problem
9.1(a). But it has more difficult vocabulary and may therefore be a
more difficult,problem for some children.

9.1(d) Two automobiles commence at the same location.
They are traveling in opposite directions. The

first automobile travels 30 mites per hour. The
second automobile travels 45 miles per haur. In
how many hours will they be 150 miles apart?

Of course, for many children the kinds of changes made in Problems
9.1(a)-(d) will not affect their ability to solve the problem. Such

a variation can assist the teacher in identifying the extent to which

the readability of a problem is linating a child!s performance. It,

can also be iistructive to the child to realize that all of these
problems are "really the same," and that only the wording has changed.

Changing the problem from one which uses the English system of
measurement to one using the metric system may also affect the diffi-

culty level without changing the structure. This change in units of
measurement is particularly important since many texts now use metric

units.

9.1(e) Two cars start at the same place. They are going

in opposite directions. The first car goes $0
kilometers per hour. The second car goes 45 kilo-
meters per hour. In how many hours will they be
250 kilometers apart?

By simultaneously changing the grammatical structure, adding words,
combining sentences, and making the vocabulary more difficult, we can
create a much more complicated problem statement while leaving the

problem structure intact.

9.1(P One automobile is traveling east, while another
automobile is traveling west from the same ini-
tial point. The former of these travels at
rate of 30 miles per hour, while the tatter
travels at a higher rate of 45 miles per hour.
How many hours will be required for the two auto-
mobiles to travel a distance sufficient to be 150
miles apart?

4 cl
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This problem has three sentences, 62 words, an average of 20.7 words

per sentence, five main clauses, two compound sentences, and many

prepos4tional phrases and infinitives. It may be More difficult for
many students to read and interpret this problem than Problem 0.1(a),

but the algorithms used to solve the two problems are the same.

The same problem can be altered by effecting changes in the
numerals and symbols used. Once again the difficulty may change,
but the structure does not. The numerals may be written out in
words, or symbols may be used in place of numerals.

9.1(g) Twor cars start at the same place. They are going

in opposite directions. The first car goes thirty
miles per hour. The second car goes forty-five
miles per hour. In how many hours will they be
one hundred fr7,,,fty miles apart?

9.1(h) TWo cars start at, the same place. They are going

in opposite directions. The first car goes
miles per hour. The second car goes 3s miles per
hour. In how many hours will they be 10X miles
apart?

The magnitudes of the numbers may be altered with or without signifi-

cantly changing the problem difficulty. The following problem might
be used as a parallel test item to Problem 9.1(a).

9.1(i) Two cars start at the same place. They are going

in opposite directions. The first car goes 60
miles per hour. The second car goes 90 miles per
hour. In how many hours will they be 300 miles
apart?

Changing the numbers may also make the problem more difficult by
changing the answer from a whole number to a fraction. This change

causes a concomitant change in problem structure, in that the

algorithm used to solve the problem now requires fractions as
well as whole numbers.

9.10 Two cars start at the same place. They are going

in opposite directions. The first car goes 40
miles per,hour. The second car goes 50 miles per

hour. In how many hours win they be 135 miles
apart?

Changing the numbers used in the problem to fractions or decimals

may make the problem still more difficult.

4 d2
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9.1(k) Two cars start at the same place. They are going
in opposite directions. The first car goes 32.5
miles per hour. The second car goes 45.1 miles
per hour. In how many hours will they be 145.2
miles apart?

The last syntax variableo to be considered here involve the sequencing
of information. The question in a problem can be placed at the begin-
ning or the end of the problem, or the order of the data can be
altered. Each of these changes may alter the problem difficulty
without changing the problem structure. The question in Problem
9.1(a) might be placed at the beginning:

9.1(l) In how many hours will two cars be 150 miles apart?
They start at the same place. They are going in
opposite directions. The first car goes 30 miles
per hour. The second car goes 45 miles per hour.

The order of the given information might be changed:

9.1(m) Two cars start at the same place. The first car
goes 30 miles per hour. The second car goes 45
miles per hour. In how many hours will they be
150 miles apart, if they are going in opposite
directions?

We have taken just one routine "word problem" and presented it in
thirteen different versions, in order to illustrate the ways in
which changes in syntax do and do not affect the problem. A child
who can immediately recognize all of these problems as "the same" is
a step ahead in solving verbal problems. Such recognition is not
automatic but must be taught.

In the following two versions of a multi-step problem, the data
have first been placed in the order in which they will be used to
solve the problem, and then have been resequenced so that they are
not in the order in which they are used to solve the problem.

9.2(a) Joe bou6,ht three shirts for $8.98 each and two
ties for $6.95 each. How much did he spend all
together?

9.2(b) A shirt costs $8.98 and a tie costs $6.95. Joe
bought three shirts and two ties. How much did
he spend all together?

The problems are identical with respect to content, context, and
structure, but the second problem is more complex than the first.

103
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Because of the difference in syntax, the data must be reorganized as
the student interprets the problem.

Thus, recognition of changes in syntax task variables enables
one to simplify the interpretation of problem statements. A problem
statement can be created parallel to the given statement wtich con-
tains only the essential problem elements, and is thus easier to
solve.

Varying Task Content and Context

Content task variables describe the subject matter of the prob-
lem. It is the content variables with which the teacher is primarily
concerned in defining the scope and sequence of a course. Problems
may be classified according to broad subject areas such as arithmetic,
algebra, geometry, trigonometry, calculus, or logic, but the classi-
fication of a problem may also depend on the achievement level and
mathematical background of the problem solver. Thus, the following
problem might be solved differently by students at different levels
of mathematics achievement.

9.3 A young farmer has eight more hens than dogs. Since
hens have two legs each, but dogs have fbur Zegs each,
all together the animals have 118 legs. How many
dogs does the young farmer own?

A capable eighth-grade student might approach this.problem with a trial-
and-error strategy. The first-year.algebra student who has just learned
to solve linear equations in one variable may solve the problem by
letting x the number of dogs, x + 8 = the number of hens, and setting
up the equation 2(x + 8) + 4x = 118. The more advanced algebra student
may use two variables to solve the problem, setting up the two equa-
tions x + 8 = y and 2y + 4x = 118. In determining the mathematical
content of the problem, the teacher must consider the student's back-
ground.

We are interested in examining problems which have different con-
tent, but similar mathematical structure. Let us look at several
examples. A problem may be classified according to traditional
problem types" (e.g., rate problems, mixture problems, age problems).
This kind of classification is probably most familiar to teachers.
The basis for the classification is found in the kinds of mathematical
information needed to solve the problem but not specified in the prob-
lem statement. For example, in solving rate problems one must use the
formula "distance equals rate times time," but that formula is seldom
stated explicitly in the problem. Each different "problem type" has
its own characteristic relationships of this sort, so that it is not
always possible to maintain problem structure while changing "problem
type." However, examples of problems with the same structure and syn-
tax but of different "problem types" are the following:

4 0 4
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9.4(a) Joan buys three pounds of candy at g1.25 a pound.
How much does she spend in aZZ?

(Money problem)

9.4(b) Tom walks three hours at 1.25 kilometers an hour.
How far does he walk?

(Rate problem)

9.4(c) Mary worked three hours, earning $1.25 each hour.
How much did she earn in all?

(Work problem)

The non-mathematical context of these probleMs has changed along with
the "problem type."

In a much more advanced example, a geometry student may be asked
to prove that the diagonals of a parallelogram intersect at their
midpoints by using vectors (Problem 9.5(a)) or by using Cartesian
coordinates (Problem 9.5(b)). The given conditions and the goals
are the same for the two problems, but the acceptable procedure
(mathematical content) has been changed.

9.5(a) Let M denote the midpoint of
A. AC and BD represent vectors
a + B and a - a, respectively,
the triangle law. Since 6 is
collinear with, equidirected
with, and one-half the length
of a IL a, we have 6 (1-) (a + B).

By the triangle law, a 4- y = 6 =

()(a f3) so y = ()(8 - a).
Therefore y is collinear with,
eLfaidirvoted wi.t, and
the length of $ - a. Hence M is
the --i-lpoint of D. (T'orbes, 1973, p. 357)

9.5(b) Since ABCD is a parallelogram,
x = a + b and y = c. The coor- D(b c
dinates of the midpoint of AC,
are (r/2, y/2). But x/2 =
(a +13)/2 and y/2 = c/2, so

(r/2, y/2)=((a+b)12, c/2).
Since ((a+b)/2, c/2) is the mid-
point of BD, the diagonals inter- A(0,0
sect at their midpoints.

C(x,y)

B (al())

Mathematical characteristics such as the type of expression in
a problem (e.g., monomial binomial, other polynomial) or the type
of operation used in the problem (e.g., addition, multiplicafion;
exponentiation) are also content task variables. An example of a
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set of problems which varies the type of expression and type of

operation systematically is the following set of algebraic compu-
tations (Krutetskii, 1976):

9.6(a)

9.6(b)

9.6(c)

9.6(d)

9.6(e)

9.6(f)

9.6(g)

9.6(h)

(a + b)2

(1 + Iga3b2)2

+ x + b)2

512

a2 b2

1 3ab )
2

(.

Y.
+ (2a)2

2(4 4. x2 4. b2)

983

9

The student must generalize across the problems from 9.6(a) to 9.6(d)
and distinguish them from 9.6(e) through 9.6(h), which do not use
the binomial formula. This becomes more difficult as the use of
the formula becomes less obvious and the mathematical content of
the problems varies.

Let us examine more closely the manner in which this series of
problems was constructed. Problem 9.6(a) is a straightforward appli-
cation of the formula (a + b)2 = a2 + 2ab + b2. In Problem 9.6(b),

there is still a binomial to be squared; but the first term is now a
constant, while the second term includes a (fractional) coefficient
and two variables with exponents. A trinomial is introduced in
Problem 9.6(c), while in 9.6(d), the polynomial and the variables
seem to have disappeared; the student must think of 51 as 50 + 1.

The problems in the second half of the set look very similar to the
ones in the first half, but are created so that the formula is not

applicable. Problem 9.6(e) resembles 9.6(a), but it is the sum of
two monomials of degree two rather than the square of a binomial;
and so forth.

The presence or absence of key words, verbal clues to the opera-
tions to be performed in a word problem, may be varied easily from
problem to problem, while maintaining the mathematical structure.
Teachers often focus on such key words in teaching students to trans-
late word problems into mathematical symbols. A list of some of
these key words is given in Table 9.2. Let us consider the follow-
ing basic problem:

9.7(a) Anthony has four bans. Jane has eight balls.
How many balls do they have?
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Table 9.2 Key Word.3

Addition

sum
in all
together
total
plus -
more (than)
greater (than)
increased
add
rise
gain(ed)
earn
save

Multiplication

product
times

multiply
each

-389-

Subtraction

differenCe
reduced (by)
less (than)
decreased
minus
fewer (ehan)
remain
subtract
fall
lost
take away
spend
change

Division

quotient
divide
per
each
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The following problems add verbal clues.

9.7(b) Anthony has four balls. Jane has eight balls.
How many balls do they have together?

9.7(c) Anthony has four balls, Jane has eight balls.
How many balls are there in all?

Now consider the following problem and its variant. Both problems

include key words, but 9.8(b) includes a possibly misleading verbal
clue whereas 9.8(a) does not.

9.8(a) Sam has fourteen dolls. Ann has four more dons
than Sam. How many dolls does Ann have?

9.8(b) Sam has fourteen dolls. Sam has four more dolls
than Ann. How many dolls does Ann have?

Problem variants may be constructed in which all of the key words
are alternately included or omitted.

The use of specific mathematical vocabulary may also affect a
problem's difficulty. For example, the following problem contains
no technical mathematical words:

9.9(a) Write a number in the box that makes the sentence
true. 5 x [1: - 50.

On the other hand, this version of the same problem contains two tech-
nical mathematical words:

9.9(b) Find the root of the equation 5x 50.

Problems having the same structure may also be varied by changing
the given information, the number of conditions which are explicit or
implied, the content of hints, and the goal information. A probl.,fli

"to find" may often be recast as a problem "to show," implying a shift
from direct to reverse thinking.

9.10(a) Find the solution(s) of 3z2 + 2z + 1 = 0 where
z is a complex number.

9.10(b) -Show that the n berp z= (-1 ± ilY)/3 satisfy
the equation 3z + 2z + 1 = 0 where a is a
complex number.
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Context variables which describe the embodiment or repregentation
of the problem may often be changed without affecting the probleM
structure. Suth changes, of course, can substantially affect the
problem difficulty. For example, as described in Chapter III, a prob-
lem may be symbglic verbal, pictorial, or manipulative. A single

task, such as adding two whole numbers, may be presented in any of
these embodiments. The symbolic task simply asks:

9.11(a) 2.4- 3 = ?

In a verbal embodiment, we have:

9.11(b) Karen has two blocks. She buys three more blocks.
How many blocks does she have all together?

The pictorial problem asks:

4 9.11(c) How many blocks are there all together?

The manipulative mode problem presents sets of actual blocks, one
set with two blocks and the other with three. The'teacher then asks

how many blocks there are all together.

The use of symbolic, verbal, pictorial, or manipulative embodi-
ments may be geared to the developmental level of the child or to his

or her familiarity with the mathematical operation(s) involved in the

problem. It is generally believed that instruction in any specific
concert should begin at a concrete manipulative level before progress-
ing to the pictorial, the symbolic and the verbal levels. Of the
examples given, then, a child would presumably first encounter the
manipulative mode problem, then 9.11(c), 9.11(a), and finally 9.11(b).

Context task variables also describe the verbal setting of the
problem. Some of the classifications which may be useful to the
teacher include,concrete versus abstract, familiar versus unfamiliar,
conVentional versus imaginative, and factual versus hypothetical
problems (see Chapterg III and VI). The familiar/unfamiliar dichotomy
is, of course, dependent upon the problem-solvers themselves--their
backgtounds and experiences. The classification of mathematical word
problems as familiar or unfamiliar, and the issue of cross-cultural
differences in standardized testing, are very closely allied. The
following-problem describes a situation familiar to most elementary
school students:

4 09
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9.12 Tony has 4? marbles. He loses 12 marbles. How
many marbles does he have left?

The next problem discribes a situation which may be unfamiliar to many
of the same,students, but requires :he same operation as 9.12.

9.13,fa) Mr. Jones took 55 pounds of raw cotton to the
gin. He got back 32 pounds of cotton fiber.
How many pounds ofseed did he get back?

_An important task of the mathematics teacher is to encourage the
detection of the correct mathematical operations, even in unfamiliar
verbal contexts. A student skilled in problem solving will be able
to solve 9.13(a) even without knowing what a cotton gin is, because
the student has a concept of problem structure which the problem
statement.fits. By explicitly contaring problems in familiar and
unfamiliar contexts, the teacher may be able to develop this skill.
Nonsense words may help. For example,

9.13(b) ltt'a. Jones took 55 pounds of ooslop to the
geezenstack. He got back 32 pounds of oozlop
meat. How many pounds of oozlop skin did he
get back?

For the problem to make sense, it must be assumed that oozlop consists
only of meat and skin, just as in Problem 9.13(a) it is assumed that
cotton consists only of fiber and seed. Studew-s can profit from
specific instruction in stating such implicit assumptions.

The conventional/imaginative dichotomy provides similar opportuni-
ties to the teacher. A conventional problem is one similar to most
textbook problems, devoid of irrelevant information. It uses the
shortest, simplest, and most direct language possible. Thus, for

example, the following:

9.14(a) Tickets to a school play cost 250. The fifth grade
sold 120 tickets, and the sixth grade sold 132
tickets. How much more money did the sixth grade
make than the fifth?

An imaginative problem describes elements of the total situation which
are interesting and have imaginative appeal, but whose presence is not
necessary to understand the mathematical elements of the situation.

9.14(b) The boys and girls in the fifth and sixth grades at
the Grant School were trying to raise some money.
They wanted to buy books for their library, and
they wanted to give something to the Children's
Hospital. They talked over many plans for raising
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money and decided they would have a School Fdir.

The two grades hood a contest selling tickets. The

tickets were 25 cents each. The contest was close.
The fifth grade sold 120 tickets, and the sixth
grade sold 132 tickets. How much more money did
the sixth grade make than the fifth?

(Wheat, 1929, p. 36)

ft,

Variations in the content and context task variables can thus
provide the teacher with a diversity of problems 'of varying degrees

of difficulty. We stress the value of making such variations explicit
to the student in order to develop the general ability to solve word

problems.

2. Using Task Variables in Instruction

The classroom teacher pays attention, consciously or unconsciously,

to task variables each day in choosing problems as examples or counter-

examples. Conscious consideration of specific variables may improve
instruction by illuminating the sources of student difficulty. In the

next section two sample unit plans are presented which illustrate this

concept. Here we shall mention some additional dimensions of the use
of task variables.

Developing Equivalent Test Forms

One problem which arises frequently in the classroom is that of

developing equivalent test forms. These may be needed for review,
for make-up tests, to eliminate cheating, or for re-testing after
remedial instruction. The careful consideration of syntax, content,
and context task variables allows the teacher to create test forms
which are truly equivalent. Each problem in a test must be con-
sidered both individually and aP an element in the test sequence.

Consider the following problem, which is similar to one discussed
in considerable detail in Chapter VI.

9.15(a) Alan bought an equaZ number of books and flowerpots.
Each book cost three dollars and each flowerpot cost
five dollars, so that he spent 48 dollars in all.
How many books did Alan buy?

First, the teacher might identify the task variables and the value of

each variable. The problem is a problem in arithmetic, or possibly
algebra (depending upon the student population). It describes the

cost of two objects with different prices. It is a concrete, applied,

factual, verbal, and familiar problem. It has 33 words in it and

three sentences. All of the vocabulary is appropriate for fourth
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graders. The syntax is not excessively complex. There are some

standard "key words," the words "each" and "in all." The numbers
used are whole.numbers, 3, 5, and 48, and the solution is a whole

number. The operations required to solve the problem are addition
(5 + 3) and division (48 8) or (algebraically) the solution of the

equation 5x + 3x = 48.

One way to create an equitvalent problem is to alter the numbers
used. An equivalent problem might be:

9.15(b) Alan bought an equal nwmber of books and flower-
pots. Edch book cost four dollars and each
flowerpot cost tnree dollars, so that he spent
49 dollars in all. How many books did AZan buy?

Care must be taken in changing a problem in this way so that the com-
putational solutions of both problems follow the same path through
the algorithm used. If the problem referred to nine-dollar books
and eight-dollar flowerpots, for example, the problem structure would
be different because the division operation would be more difficult
than in the given problem.

Another way of altering the problem is to change both the numbers-
used and the objects purchased.

9.15(c) Alan bought an equal number of plants and records.
Each plant cost five dollars and each record cost
fbur dollars, so that he spent 45 dollars in aZZ.
How many plants did Alan buy?

In doing this, we must be careful that the vocabulary remains at the
same grade level and that the computational algorithm çemains the

same. We must also take care that the objects nentiq,. bear the
same relationship to each other as in the original prob em. A prob-
lem about buying an equal number of plants and flowerpo s, as we saw
in Chapter VI, is probably easier than one about buying an equal
number of books and flowerpots or plants and records, because it is
more natural to think of paying one price for the pair.

A more radical alteration of the problem changes the whole situa-
tion (content), but does not alter the vocabulary level, the syntactic
complexity, problem structure, or other task variables.

9.25(d) A family has an equal number of brothers and
sisters. Each brother has five books and each
sister has two books, so that they have 42 books
in all. How many brothers does the family have?

4
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Notice, however, that the "key wor s" have.been preserved, in order

not to affect the problem difficJxr. Task variables can thus be
manipulated to produce equivale t test forms in the classroom with
a high degree of confidence (s rt of extensive statistical data on

the equivalence of the forms).

Varying Mathematical Structure

.A second teaching application is to use task variables in creat-
ing problems with varying structures but with the syntax, content,
and context task variables held constant. This is in contrast to
the approach described in Section 1. Such sets of problems enable
the students to concentrate on differences in the mathematical struc-
ture of the problem solution rather than on the process of decoding
and translating the problem statement. Let us consider the follow:-

ing problem.

9.16 The Student Council sold too kinds of nuts. Peanuts
cost 25 cents a bag and almonds cost 45 cents a bag.
They sold 30 bags of peanuts and 40 bags of almonds.
How much money did they make all together?

/is

The next problem retains the same syntax content, and.context. The

structure, however, has changed.

9.17 The Student Council sold two kind3 of nuts. Peanuts
cost 25 cents a bag and almonds cost 4cnts a bag.
They sold 100 bags of nuts for $33.00 alZ together.
How many bags of each kind of nut did they sell?

The solution of this problem requires either the solutionof an algebraic
equationor a trial-and-error process. Here are two more variants.

9.18 The Student Council sold two kinds of nuts. Peanuts
cost 25 cents a bag and almonds cost 45 cents a bag.
They sold 50 bags of peanuts and made $48.50 all
together. How many bags of almonds did they sell?

9.19 The Student Council sold two kinds of nuts. Peanuts
cost 25 cents a bag and almonds cost 45 cents a bag.
They used 160 bags of peanuts and sold mixed nuts
for 40 cents a bag. How many bags of almonds did

they use?

In each of these problems the solution algorithm is different. The
similarity of syntax, content, and context makes it easier for stu-
dents to detect and understand the reasons for the differences.
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Unit Planning, Using Task Variables

In this section two unit plans are described. The first involves
single-operation word'problems, and is directed towards a sixth-grade
class; the second Involves ratio and proportion, and is directed

towards a first-year algebra class. These unit plans are intended
to illustrate the systematic variation of selected syntax, content,
and context task variables, while other variables are held constant.
In addition, activities are provided which hold syntax, content, and

context variables constant, while structure variables are manipulated.

It is suggested that such intentional manipulation of selected task
variables can be a powerful pedagogical device in the teaching of
problem solving.

Solving Single-Operation Word Problems
(44 6th-Grade Sample Unit Plan)

The following unit is designed for a group of below-average sixth
graders. It deals with single-step, routine word problems employing
whole numbers. The broad subject area-classification is arithmetic,
and the problem embodiments used in the unit are primarily verbal.
The problem statements are written with syntax and vocabulary appro-
priate for a fourth-grade level of reading ability.

Objectives

The objectives of this unit include:

1. Syntax variilbies

a. Rearranging the information given and the question sentence
without changing the nature of a problem.

b. Recognizing two problems having different grammar and
syntax as mathematically the same.

2. Content variables

c. Recognizing "key words" and stating the arithmetic opera-
tion with which they are most often associated.

d. Writing number facts to accompany given word problems.

e. Writing word problems to accompany given number facts.

3. ,Context variables

f. Recognizing Word problems that vary context while keeping
syntax, content, and structure constant by identifying
contextual information irrelevant to the problem's solution.
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g. Recognizing two problems having different contextual
embodiments (settings) as mathematically the same.

4. Structure variables

h. Recognizing the absence of information necessary to solve
a problem, and stating what is missing.

I. Recognizing the presence of extraneous mathematical
information in a routine word problem, and eliminating
it from the problem.

j . Solving word problems using the correct whole number
operations.

Activities

These activities are organized according to their association with
one or more of the above objectives. The rationale for the sequencing
of the activities is based on the hierarchy of task variables in Chapter

I. That is, the students are in effect being led through Polya's stages

of understanding the problem, devising a plan, and carrying out the plan.

Syntax Variables

Objective (a): Rearranging the information given and the question

.
sentence without changing the nature of a problem.

The teacher first demonstrates how the information given in a
problem can be rearranged without changing the nature of the problem

itself. Examples which might be used include the following problems:

9.20(a) Ann has four cookies. James has six cookies.
How many cookies do they have,in all

9.20(b) James has six cookies. Ann has four cookies.
How many cookies do they have in all?

9.20(c) HoW many cookies do Ann and James have in all?
Ann has four. James has six.

The students then rearrange the information given in a series of

increasingly complex word problems, writing each problem in an alter-

native form.



-398-

,Objective (b): Recognizing two problems having different grammar
and syntax as mathematically the same.

The teacher demonstrates that two problems which are worded differ-
ently may represent the same mathematical situation. For example,

9.21(a) Howard has 125 baseball cards. He buys 52 more
cards. How many cards does he have now?

9.21(b) Howard already had 125 baseball cards, and today
he bought 52 more. How many cards does he have
now?

The students are then given two sets of problems. The second set of
problens consists of syntax variations od the first set; the grammar
and/or syntax of each problem on the first list is changed without
altering its solution. The problems in the second set are listed in
random order. The students are asked to match each problem on the
first list with the problem on the second list which is mathematically
the same.

Finally, students are asked to rewrite a given word problem by
using as many words as possible, or by using as few words as possible.

Content Variables

Objective (c): Recognizing "key words" and stating the arithmetic
operation with which they are most often associated.

Students list words that are associated with each .of the four

arithmetic operations. For example, "What words or phrases make you
think about adding?" A class list is compiled and posted as a bulletin
board display. Possible answers can be found in the list of key words
(Table 9.2).

The students then identify key words in word problems, and choose.
the correct-operation for each problem. Sample problems are as
follows, with key words underlined.

9.22 Ray bought 325 baseball cards. He already 7=4 518
baseball cards. How many baseball cards does he have
in_all?

9.23 Susan has 38 books. Harry has five less than Susan.
How many books does Harry have?
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9.24 George bought 15 oranges. Ann bought three times
as many oranges. How many oranges did Ann buy?

9.25 I am thinking of a number. MV number is,82 less

than 415. What is my number?

9.26 Find a number that is the product of 16 and 23.

9.27 joe has 15 cookies. He wants to divide them equally
among three friends. How many cookies does each
friend get?

9.28 Find the number that is equal to the quotient when
28 is divided by four.

The
omitted.
preted.

next day the students discuss problems with the key words
The missing words are varied, and the problems are inter-

For example,

9.29 Oscar 15 cookies. He three cookies.

How many cookies does he have

9.30 Find a number that is the of 8 and 4.

Next the students write problems using the key words on the class

list. The problems should use complete sentences. For example, a

suitable problem might be:

9.31 I have thirteen cookies. I eat five. How many
cookies do I have _left?

The underlined word is the key word from the list used in the problem.
Students may be asked to write on a specific topic, such as buying
groceries or going to the circus.

The class discusses how changing a few words can alter an entire
problem's meaning and solution. For example, the following sequence

of problems might be considered.

9.32(a) John has five dollars. He earns three dollars.
How much does he have now?

9.32(b) John has five dollars. He saves three dollars.
How much does he have now?

9.32(c) John has five dollars. He spends three dollars.

How much does he have now?

4. I
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9.32(d) John needs five dollars. He has three dollars.
How much does he need now?

Another day the students may discuss the ambiguity of some verbal
clues. Those clues which may be misleading because they have alter-
nate interpretations are so marked on the class list of key words
(DANGER! WATCH OUT!).

The students choose the correct operation for problems which
include possibly misleading key words. Sample problems follow.

9.33 Ann hit 16 homeruns this year. This is five more
than she hit last year. How many homeruns did she
hit Last year?

9.34 The sixth grade went on a 'fieLd trip. They went a
total_o 37 miles. They went six miles on a country

'',4,41.400;rand 4e rest of the way on the highway. Haw
many miles id they go on the highway?

9.35 What is my n ber? The sum of sixteen and my number
is 25.

9.36 Our town has a Zarg airport. There are 12 buildings.
There are eight plane at each buiZding. How many
planes are there in all.

9.37 The cafeteria serves 180 people. The e are two rolls
per person. How many rolls are needed.

9.38 Fifteen times a number is 75. Wh'at is the number?

9.39 The difference between a number and seven is 33.
What is the number?

This set of problems, designed to aid students in recognizing poten-
tially misleading key words and reconciling conflicting verbal clues,
also varies the context task variables of problem setting and the
syntax task variables of problem length, readability, and sequencing.

Students may be asked to rewrite problems keeping certain key
word(s) and trying to change the operation used. For example, the
following problem might be considered initially:

9.40(a) Joseph and Tom have 40 marbles in all. Tom

has 12 marbles. How many marbles does Joseph
have?
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This problem could be rewritten in several ways, and the meaning of
"in all" discussed.

9.40(b) Joseph has 40 marbles in an. Tom has 12

marbles. How many marbles do they have?

9.40(c) Joseph has 40 marbles. Tom has 22 marbles.
How many marbles do they have in all?

Objective (d): Writing number facts to accompany given word problems.

The students practice writing number facts to accompany given
situations depicted by the teacher using manipulatives, and to
accompany pictures of mathematical situations.

The students write number facts to accompany given word problems,
where the word problems have been designed to describe situations simi-
lar to the manipulative and pictorial situations. The students match
the different situations which are described by the same number facts.

Objective (01 Writing word problems to accompany given number facts.

The students write word problems to accompany given number facts.
For this activity, the teacher should provide a variety of possible
contents (money, age, etc.) by introducing a set of characters and a
situation (e.g., friends in a supermarket, a'family having different
ages).

Context Variables

Objective (f): Pecognizivy word problems that vary context while
keeping syntax, content, and structure constant by
identifying contextual information irrelevant to the
problam's solution.

The teacher demonstrates how a problem setting may be changed
without affecting the solution process for the prqblem. For example,

the following problems may be discussed. (These problems were con-
structed so as to be as nearly identical as possible with respect to
problem length, readability, and mathematical structure, as described
in Chapter VI.)

9.42(a) There is a number. If this number were two times
as large as it really is, then it would be equal
to 28. What is the number?
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9.41(b) Jenny is a girl. Jenny's father is three times
as old as Jenny is, and he is 39 years old. How

old is Jenny?

9.41(c) Eddie is a boy. If Eddie were four times as old
as he really is, then he would be 48 years old.

How old is Eddie?

9.41(d) There is a number. A second number is five times
as Large as the first number, and the second number
is 55. What is the value olthe first number?

For a second activity, the students may be asked to fill in
missing words in problems so as to change the context. For example,

the following problem may be concerned with "apples" or "gleeps."

9.42 I have 32 . I buy 71
do I have in aZZ?

. How many

Students may also be asked to fill in missing numbers in problems and
then describe how to solve the problem.

Objective (g): Recognizing two problems having different contextual
embodiments (settings) as mathematically the same.

The students state a word problem in pictures: Students use

actual objects to act out; similar word problems. The concrete, pic-
torial, and symbolic versions are compared and discussed. Examples
of mathematical situations in everyday occurrences, and in newspapers
and magazines, may provide the opportunity to make up word problems
about the situations. These word problems can then be compared to
other word problems which are mathematically the same. Word prob-
lems with varied contexts may be the focus of matching activities.

Stract re Variables

Objective (h): Recognizing the absence of information necessary to
solve a problem, and stating what is missing.

The students are given problems with missing information. They
are asked to state what else is needed in order to solve the problem.
Sample problems follow.

9.43 Mr. Hardy's bus ticket costs $4. How much will it
cost in all for ith4. Hardy and his son to ride the bus?
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9.44 When the rain started, 208 people left the football
game. How many people remained?

9.45 Ron Daly puts in telephones. He put in 60 phones.

How many phones did he put in each day?

9.46 Joe bought a lmif of bread and a dozen eggs. The

eggs were 78 cents. How much was the bread?

9.47 Find my number. It is five less than John's age.

The problems are varied with regard to context task variables (abstract
or concrete), syntax task variables (placement of the question, length),

and content task variables (key words).

The students are then given problems in which every fifth word
has been replaced by a blank. They will fill in the blanks and dis-
cuss their choices, to see if they make sense.

Objective (1): Recognizing the presence of extraneous mathematical
information in a routine word problem, and eliminat-
ing it from the problem.

The students are given problems including irrelevant numerical
information and asked to state what is unnecessary in the problem.
They will then solve the problems. Some sample problems follow.

9.48 Joe and Tom played marbles every day for three weeks.
They have 50 marbles in all. Tom has 12 marbles.
How many marbles does Joe have?

9.49 Our town has a large airport. It is 15 miles from
my house. It has 12 buildings. There are seven
planes at each building. How many planes are there
in all?

9.50 What is my number? The sum of eight and my number is
32. The difference between 12 and my number is 12.

9.51 The cafeteria serves 210 people. Each person gets
too pieces of chicken, milk, salad, vegetables, and
five cookies. There are too rolls per person. How
many rolls are needed?

9.52 Susan has 14 books. Harry has five less than Susan
and AZ has ten times as many as Susan. How many
books does Harry have?
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The similarities between these problems and previous ones should be
pointed out to the students; 9.48 is a revision of 9.40(a), 9.49 is
a revision of 9.361 9.50 is a revision of 9.35, and 9.51 is a revi-
sion of 9.37. The problems'were created by aading extra information
to some of the problems from earlier sets.

Objective (j): Solving word problems using the correct whole number
operations.

The students make up word problems and write them on index Cards
to be used as contest problems. Each contest problem is checked by
the teacher for validity. They will then have a class competition,
solving each others' problems. The rules must forbid problems with
excessively large numbers or too many conditions.

The students may make up word problems to be put in a workbook
for students in the fourth or fifth grades. Each student will be
responsible for solving his.or her own problems.

The students may then be given a word problem set as a culminat-
ing activity, providing practice'in solv,ing a variety of problems.
Context, content, and syntax task variables describing problem length,
vocabulary, key words (both helpful and misleadiii), problem setting,
and sequencing of information should all be utilized in designing
the problems.

Finally, the students may make a list of those characteristics
of word problems which can change without changing.the mathematics
of the problem. For example, some things which can change include
the order of the information, the actual words used, the number of
words used, and the problem setting.

Solving Problems in Ratio and Proportion
(An Algebra I Sample Unit Plan)

Our second_unit plan is designed for an average ninth-grade
algebra class. The specific subject areas include ratio and pro-
portion. The problem embodiments are symbolic: both equations
and word problems are Studied. It is assumed that the students
have previously studied the simplification of rational expressions
and routine computations with rational expressions.

4

Objectives

The objectives of this unit include:

1. Syntax variables

a. Recognizing the various means of writing ratios (e.g.,
4 to 5, 4/5, 4:5).



b. Recognizing the various means of writing proportions
(e.g., 415 x/10 and 4:5 x:l0).

c. Rearranging the information given and the question
sentence without changing the nature of the problem.

d. Recognizing two problems having different grammar
and syntax as mathematically the same.

2. Content variables

e. Recognizing that problems from specific fields of
application may require the use of specific mathe-
matical relationships understood to hold within the .
field of application (e.g.) the definition of batting
averages).

f. Recognizing and using key words for ratio and proportion.

g. Recognizing and interpreting specific mathematical
vocabulary: ratio, proportion, means, extremes.

h. Identifying given information in a word problem
involving proportions.

i. Identifying goals in word problems using proportions.

j Writing equations to accompany given word problems.

k. Writing word problems to accompany given equations.

3. Context variables

1. Recognizing word problems that vary context while keeping
syntax, content, and structure constant by identifying
contextual information irrelevant to the problem's solu-

tion.

m. Recognizing two problems having different contextual
embodiments (settings) as mathematically the same.

4. Structure variables

n. Stating a ratio as a fraction in lowest terms when given
a situation described in a verbal problem.

o. Recognizing the absence of information necessary to solve
a problem, and stating what is missing.

p. Recognizing the presence of extraneous mathematical infor-
mation in a routine word problem, and eliminating it from
the problem.

4: 3
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q. Solving word problems based on.proportion.

Although the content areas of this unit plan and the preceding
one are quite different, every objective in the sixth-grade unit also

appears in this unit.. The basic unit structure thus is relatively
independent of content and can therefore be used for almost any con-
tent area.

Activities

The activitlis.are again organized according to their association
with one or more of the above objectives. Most activities are only
sketched, however, 'requiring further elaboration by the teacher.

Syntax Variables

Objective (2): Recognizing the various means of writing ratios.

The class conducts an experiment, drawing several marbles, one
at a time, from twn bags-containing red and blue marbles. Each marble
is replaced after it has been selected and its color recorded. The

class discusses estimating how many red marbles are in each bag, how
many marbles in all are in each bag, and so forth. This leads to a dis-
cussion of the fraction of marbles in each bag that are red and thus
to a definition of the term "ratio." Various ways of writing ratios

are presented. Several examples are worked, and the students do some
problems orally. Some of these use whole numbers:

9.53(a) 26 to 20

Some use fractions:

9.53(b)

And some use algebraic expressions:

9.53(c) (c d)3 to (c d)

Objective (b): Recognizing various means of writing proportions.

The following problem is presented to the students:

9.54(a)
24 x
50 20

4 4
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Using their knowledge of various ways of writing ratios, the students
generate as many different ways of writing this same problem as they

can. Some alternative possibilities include:

9.54(b) 24/50 =

9.54(c) 24:50 = x:20

9.54(d) 24 to 50 = x to 20

The advantages and disadvantages of each version should be discussed.

Objective (c): Rearranging the information given and the question
sentence without changing the nature of the problem.

The teacher demonstrates how the given information can be
rearranged without actually changing the problem itself. The follow-

ing examples might be used:

9.55(a) Five apples cost $1.00. I want to buy 12 apples.
How much money do I need?

9.55(b) I want to buy 12 apples. Five apples cost $1.00.
How much money do I need?

9.55(c) How much money do I need? I want to buy 12 apples.
Five apples cost $1.00.

The students rearrange the information given in a series of increasingly
complex word problems, writing each problem in an alternative form.

Objective (d): Recognizing two problems having different grammar and
syntax as mathematically the same.

The teacher demonstrates that two problems which are worded differ-
ently may represent the same mathematical situation. The following
examples may be used:

9.56(a) The Record Shop sells three records for $15.
Sally wants to buy four records. How much
money will the records cost?

9.56(b) Sally bought four records from the Record Shop
where they were selling ti-ree records for $15.
How much did the records cost?



The students match problems (to equivalent problems.) having different
grammar and syntax. They then rewrite given problems by using as many
or as few words as possible.

Content Variables

Objective (e): Recognizing that problems from specific fields of applica-
tion may, require the use of specific mathematical relation-
ships understood to hold within the field of application.

Batting averages as examples of ratios are studied. Students learn
that batting averages are always expressed as the ratio of number of,
hits to number of times at bat rounded to the nearest thousandth.

Profit-to-cost and profit-to-selling price ratios are discussed.
Students leatn the basic assumed relationships between profit, cost,
and selling price. Problems are of different embodiments; concrete
personal examples (9.57(2)) are considered first, with more complex
symbolic problems (9.57(b)) considered later.

9.57(a) You own a book store. You buy the newest best
seller for $5. You sell it'for $7. What is your
profit-to-cost ratio?

9.57(b) You own a book store. You buy.the newest best
seller for x dollars. You sell it for x + 2 dollars.
What is your profit-to-cost ratio?

Problem givens and goals should be varied so that students are
given profit and cost, profit and selling price, or cost and selling
price and are asked to find profit-to-cost or profit-to-selling price
ratios.

Ratios derived from the composition of chemical compounds are also
discussed, along with the necessary assumptions of mathematical rela-
tionships. For example, the ratio of hydrogen atoms to oxygen atoms
in water (H20) is 2:1.

Ratios comparing different units of measure also require the use
of implicit assumptions. For example, writing the ratio of seven
minutes to two hours first requires changing all units to minutes
(or hours). Students set up ratios comparing different units.

In addition to setting up ratios by using the implicit assump-
tions of a field of application, students may be asked to state
explicitly the assumptions made in a ratio or proportion word problem.
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Objective (f): Recognizing and using key words Pr ratio and proportion.

Key words for ratios are identified by the students. Some examples

are givan in Table 9.3. Students writewproblems using the key words and
set up the ratios involved. They may be asked to write several problems
for a specific ratio, using the same key word(s) and different non-
mathematical contexts.

Key words for proportions are identified and listed (Table 9.3).
Students identify key words in textbook problems and then write their
own problems using the key words.

Objective (g): Recognizing and interpreting specific mafhemptical
vocabulary: ratio, proportion, means, extr4Mes.

Students give examples of ratios and proportions in both symbolic
and verbal forms. The teacher defines the terms "means" and "extremes,"
explaining the solution of a proportion by developing symbolically the
rule that the product of the means equals the product of the extremes.
Students identify the means and extremes in problems from the text.

Objective (h): Identifying given information in a word problem
involving proportions.

Students identify the given information in word problems involving
proportions. For example, the following problem is given:

9.58(a) MY,. Smith bought his house for $42,000 five years
ago. He is moving to another city and wants to
sell it for a profit that is 1/10 of his cost.
How much should he sell the house for?

The information given in the problem is identified: price of house
originally and the profit-to-cost ratio.

Ob,lective 7.): Identifying goals in word problems using proportions.

Students identify goals of word problems involving proportions.
For example, in Problem 9.58(a) , the goalof the problemis identified

as being the selling price of the house. Suggestions for the prob-
lem's solution are offered by the students; most set up the problem
as a proportion,

1 x
9."58(b)

10 42,000

and solve for x 4,200. The students identify this as the profit
rather than the selling price. Recalling the relationship cost +
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Table 9.3 Key Words: Ratio and Proportion

Ratio Proportion

out of as

is to at the same rate

per ratio
each rate

to out of
is to
per
each
to
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profit = selling price, they compute a selling price of $46,200.

Objective (j): Writing equations to accompany given word problems.

The stude:tcs write equations to accompany given word problems
involving proportion..

Objective (k): Writing word problems to accompany given equations.

The students write word problems to accompany given pro-
act vity, the teacher may wish to provide a
conients.(e.g., batting averages, chemical

0

portions. For this
variety of possible
campounds).

Context Variables

Objective (Z): Recognizing word problems that vary context while
keeping syntax, content, an2 structure constant by
identifying contextual information irrelevant to
the problem's solution.

The teacher demonstrates how a problem setting may be changed
without affecting the solution process for the problem. The follow-
ing problems may be used as illustrations: .

9.59(a) I want to buy some books. I have fifteen dollars,
and seven books cost 35 dollars. Row many books
can I buy?

9.59(b) I am thinking of a number. This number is related
to fifteen, and seven is related to 35 in the same
way. What is this number?

The students may also.be asked to fill in missing words in prob-
lems so as to change the context. For example, the following problem
may deal with "records" or "gobbledygooks."

9.60 Six cost $15. Row many can I buy for $27.50?
0

Students may also be asked to fill in missing numbers in problems and
then describe how to solve the problem.
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Objective (m): Recognizing two problems having different contextual
embodiments (settings) as mathematically the same.

Other problems using proportions and varying situations such as
batting averages, chemical compounds, and angles of a triangle, are

considered. Students identify similarities such as the presence of a
ratio in the given information. Assumptions peculiar to each applica-
tion are identified, such as the definition of a batting average or
the theorem stating that the sum of the measures of the angles of a
triangle is 1800. Problems which have different embodiments but which
are mathematically equivalent are compared. An example follows:

9.61(a) An alloy is composed of three parts nidka, two
parts aluminum, and one part zinc. How many
grams of zinc are there in 180 grams of the alloy?

9.61(b) One angle of a triangle is twice as Large as the
smallest angle, and the third angle is three times
as large as the smallest angle. What is the

measure of the smallest angle?

, Objective (n): Stating a ratio as a plaction in lowest terms when
given a situation described in a verbal problem.

Structure Variables.

Students examine various applications of ratios, stating similari-
ties between them and setting up ratios for each. They study newspaper
advertisements for canned goods and determine the more economical buys
(e.g., four cans of soup for 89 cents or one can for 23 cents). Prob-
lems involving profit-to-cost ratios, profit-to-selling price ratios,
and ratios derived from chemical compounds are solved. Students may
also make up and solve their own word problems using ratios. These
student problems may be combined for a homework assignment, contest,
or class booklet.

Objective (o): Recognizing _the abse?,le of information necessary to
solve a problem, and stating what is missing.

The students are given problems with missing information. They
are asked to state what else is needed in order to solve the problem.
The problems are varied in regard to context, syntax, and contant.

The students are given problems in which every fifth word has
been omitted. They are asked to fill in the omitted words and dis-
cuss their choices.
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Objective (p): Recognizing the presence of e.xtraneous mathematical
information in a routine word problem, and eliminat-
ing it from the problem.

The students are given problems including irrelevant numerical
information and asked to state what is unnecessary in the problem.
They then write equations to accampany the problems and solve them.

Objective (q): Solving word problems based on proportion.

Students solve word problems using proportions. Students may
also write their own problems.

4. Ccnclusion

We have considered syntax, content, and context task variables as
indicators cf problem difficulty, as tools enabling the teacher to
create equivalent problems, and as a means of organizing instruction
in problem solving. Thcse variables, examined and analyzed in earlier
chapters, have here been applied to instructional situations. Know-
ledge of the nature and effects of task variables has real utility.
The teacher familiar with the vocabulary and the research is more
effectively prepared to select and design appropriate problems, to
foresee and overcome possible difficulties, to teach students the art
of problem solving, to communicate his or her own experiences to other
teachers, and to comprehend the experiences of other mathematics educa-
tors.
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Str:ucture and Heuristic Behavior Variables in Teaching

A.

° Applications of Problem Structure

by

George F. Luger*
University of Edinburgh
Edinburgh, Scotland

In this section two kinds of problems are discussed. First we look
at "routine" problems, which can often be classified into standard "prob-
lem types," having content and/or structure characteristics in common.
Secondly, we look at "non-routine" problems, and suggest the explicit
analysis of problem structure as an effective means for teachinl problem-
solving skills. In both cases, teaching approaches are exemplified
through short sample lesson plans.

1. Schema Driven Inferencing and Routine Problem Types

Thc word "schema" is used by Bartlett (1936) to refer to a struc-
turing of information, a loose confederation of relationships, that
representS the capacity to perform some task or function. In the
terminology of Hinsley, Hayes, and Simon (1976) the "problem type"
schema includes the semantic information contained in the general prob-
lem situation, and clues for using this information in solving the
particular problem. In this section the word "schema" will refer to
the structuring and storage of the semantic information necessary for
problem solving.

Hinsley, Hayes, and Simon (1976) discuss schemata in relation to
solving algebra word problems similar to those found in secondary school
textbooks. They conclude the following:

a. Students categorize problems into "types." While problems
are not uniquely categorizable, they fall broadly into groups
such as "age," or "river travel," or "work" problems.

b. Students classify such problems even before they have assimi-
lated all the important information, and before the problems
have been formulated fur solution.

*Current address: University of New MExico, Albuquerque, N.M.
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c. Students possess a body of information about each problem type

'which is potentially useful for formulating problems of that

type for solution. This information helps focus attention on

important facets of the problem.

d. Students use this "category" or "problem type" information in
-tormulating_prohlems for solution not merely for classification.

The use of "problem type" information to fticus on relevant facets of the

problem, or to recall and apply appropriate equations, are characteris-

tics of schema dri7)en inferencing.

To demonstrate what is meant by the semantic information associated

with a particular problem type, consider the following examples.

"River Problems":

10A.1 If a boat takes 3 hours to go four miles up a river and
2 hours to return to the starting point, what is the
speed of the current?

Some of the unstated assumptions in this type of problem are: (a) there

is no wind to affect the speed of the boat, (b) there are no obstructions

in the water, (c) the boat is not slowly taking on water, (d) the boat's

speed (in' still water) as well as the speed of.the river current is con-

stant; and so forth. Equations associated with this problem type are:
Distance = Rate x Time, and Speed (Net) = Speed (1) + Speed (2), where
Speed (2) and Speed (2) may refer to boat, wind, or current speed.

"Pulley Problems":

104.2 A man of 140 lbs. and a weight of 21.2 lbs. hang from a
rope over a pulley. Find the acceleration of the system.

Here it is assumed that: (a) the man and the weight hang vertically
downward, (b) the rope does not stretch, (c) the pulley is fixed and
frictionless, etc. These facts, though not directly stated in the prob-
lem itself, must be understood to produce a correct solution. In addi-
tion, the problem solver must call on Force = Mass x Acceleration, the
value of the earth's gravitational force, and rules for obtaining a
resultant force.

"Money Problems":

10A.3 If the value of 25 nickels and dimes in John's pocket
is $1.79, how many coins of each type does he have?

An understanding of this problem statement must include the unstated
semantic information that the value of each nickel is 5 cents and the
value of each dime is 10 cents. In addition, "coins" must be inter-
preted as having both a number (the number of dimes) and a value (each
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dime is worth 10 cents). This information must be used by students_
to see that the problem statement is contradictory.

Thus, each problem type has its own semantic content. This content
should be considered carefully by the teacher before disCussion of prob-
lems with the students. Lack of explicit discussion of problem-type
-Information is a major shortcoming of'many secondary school textbooks,
which often assume that semantic content will be somehow "picked up"
during the process of problem solving. This assumption can be false,
especially for slower students. In fact, inadequate understanding of
the semantic content of a problem can be the major source of problem
difficulty not only for slow students but for students from different cultures.

It should be noted that semantic information, as we use the term,
refers both to problem content and problem structure (see Chapter I).
To the extent that it merely augments the problem statement wIth addi-
tional, unstated "givens," the semantic information may be considered
part of the problem "content." However, the underlying algebraic rela-
tionships (e.g., the equations associated with "river travel" or "pulley"
problems) are pamof the problem "structure" and these too are included
in the "problem type" schema. The processes of equation instantiation
and the algorithmic solution of equations are structure-related.

These ideas will now be developed in a series of sample lesson plans
aimed toward assisting students in formulating problems for solution.

Lesson Plan 1: River Travel Problems

Objective: To enable the students to "set up".and solve river
travel problems utilizing the semantic infcrmation
associated with this "problem type."

Select a set of six to eight "river travel" problems from algebra
textbooks. Once the problem type has been introduced with several prob-
lems, have students create "river travel" problems of their own.

Consider a simple example.

10A.4 A boat that travels four miles per hour in stiZZ water
goes downstream from pier A to pier B in two hours.
If the return trip takes six hours, what ié the speed
of the current?

Elicit, in discussion with the students, the semantic information indi-
cated below;

(a) The forces that are acting on a boat traveling in the stream.
(Wind, current, bouyancy of the boat--is it slowly sinking;
does the engine or person rowing wear out?)
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(b) An intuitive representation for describing boat speed up
and down the river; for example:

BSP + W + C + . . . BSD

BSP -W-C+ . . .BSU

(where BSP is the boat speed, W is wind, C is current,
BSD is boat speed downstream, and.BSU is boat speed
upstream).

(c) The quantities relevant to the situation, arriving at
answers to questions such as:

1. How is boat speed measured (in still water)? Is boat
speed constant in the "real world?" (No.) What is
done with boat speed in the problem? (It is idealized
and fixed.)

2. How is wind speed calculated? May it be ignored? May
this variable be ignored in ocean travel or air travel?

3. How is current measured? What is the difference
between "upstream and downstream"? Is the current in
a river constant? Are there places in the water where
the current changes? What happens where the river
bends?

Next, c1J..--uss appropriate equations for this problem type.

(a) 1. BSP + C BSD

2. BSP C BSU

(b) Distance equals rate times time:

1. D1 BSD x T1

2. D2 BSU x T2

3. Are Di, and D2 different? Why?

(c) Proper equation instantiation.

1. D (BSP + C)T1 or D (4+C).2

2. D (BSP C)T2 or D (4-C)*6

(d) Proper operations to solve these equations.

4 35
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Then present additional problibs of the river travel category,
with a repeat of the discussion above. Vary the problems systemati-
cally by:

(a) giving problems similar in structure to the problem above;

(b) making the problem statement more complex, but maintaining
students' focus on the relevant equations;

(c) adding new relevant material such as a constant wind speed,
or by introducing irrelevant information.

'Finally, have the students make up and solve at least one river
travel problem of their awn.

Lesson Plan 2: Money Problems

Objective: To enable students to "set up" and solve qpin
problems utilizing the semantic information
associated with this problem type.

The teacher should select six to eight "money" problems. Problems
should be ordered by difficulty for presentation, and the creation of
additional problems by students should be encouraged. Consider the
following example.

10A.5 Jon has $1.25 in nickels and dimes in his pocket. If
the total number of nickels and dimes is twenty, how
many nickels does Jon have?

Elicit, in discussion with the students, the following semantic infor-
mation:

(a) What coins could be used to make up $1.25 if pennies, nickels,
dimes, quarters, and half-dollars are to be used? Make up
several examples (5 quarters, 125 pennies, 4 quarters and 5
nickels, . . .).

(b) Formulate some intuitive representations, such as:

p nc,

where p, n, d, q, and h refer, respectively, to pennies,
nickels, dimes, quarters, and half-dollars, and nc is the
number of coins.

(c) Which coins are actually used in this problem?
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(d) Co Bider the value of the coins. Use examples such as:
How many nickels make thirty cents? (.05n . .30) How
many dimes make up $1.30? (.10d . 1.30)

In general, formulate possible value (v) combinations
such as .01p + .05n + .10d + .25q + .50d V.

.

Next, discuss appropriate equations for this problem,tpe.

(a) n + d x, where x is the number of spins.,

(b) .05n + .10d . v, where v is the value of the coins..

(e) Determine the proper equation instantiation,-.05n +
.10d . 1.25 and n + d 20.

(d) Be sure students can perform the correct operations to
solve the equations.

Have the students solve several similar coin problems. Ask them
to invent some problems; suggest making up an impossible coin problem.

Lesson plans similar to the two above may be constructed for" teach-
ing other problem types such as "mixture" problems, "work" problems, and
so on.

Consider a final example, the teaching of "age" problems.

Lesson Plan 3: Age Problems

Objective: To enable students to "set up" and solve age
probleins through the use of semantic information
associated with this problem type.

Review the idea of "variables" and how they may be used to repre-
sent changing values of numbers--such as the ages of people. Then
represent specific "aging" conditions as algeb.sic expressions, using
charts to represent the changes in ages. For example, if Jane is now
6, John 16, and their father 36, then their current and future ages
and the relationships among them are:

5 years ago

current age

4 years from now

10 years from now

Jane John Father

6-5 16 - 5 36 - 5

6 16 36

6

.

+ 4 16
.

+ 4
,

36 + 4
,

.

6 + 10 16 + 10 36 + 10

_J

477
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From a chart of this nature; it is easy to discern relationships between
present and future ages. For example, "Jane's father is now six times
Jane's age"; 6.(Jane's age) = (father's age) or "In four,years, John
will be half as old as his father": .(John's age + 4) = l/2.(father's
age + 4).

Write "age problems" for given expressions such as x + 7 and 5 +:y,
Give assignments td groups or individuep.s that require:

(a) The representation of simple given age situations by
algebraic expressions.

(b) The verbal description of simple age situations for which
algebraic expressions are given,

(c) The verbal description of simple age situations and repre-
sentation of the situations with appropriate expressions.

A point deseiving particular attention is that of aging uniformity,
which should be represented by a chart similar to that above. Discuss
uniformity of aging by solving problems such as;

1OA.6 Martha is 12 years old and Bob is 15 years old. How
much older than Mdrtha will Bob be in 5 years?

10A.7 Tracy was 10 years old when Tony was 8 years old.
Now, 5 years later, how much older is Trccy than
Tony?

10A.8 Faith is 21 years old and Fred is 19 years old. Ten

years from now, how much older than Fred wi/Z Faith
be?

Represent uniformity of aging with arithmetic or algebraic equations,
and ask students individually or in small groups to illustrate uniform
aging by writing and solving other similar problems, Require that the
students produce a representation by means of arithmetic or algebraic
equations.

Within the problem type referred to as "age problems," uniform
, aging is an example of unstated semantic information which must become
part of the student's schema, and which may typically yield an equa-
tion. But it should also be noted that the algebraic relationships
and algorithmic procesies associated with age problems are not fixed:
The problem strIKture may vary from arithmetic expressions to be com-
puted, to single iTgebraic equations, to simultaneous algebraic
equations. Thus, problem structure may vary considerably within the
broad classification "problem type,"

498
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A notion often overlooked in tradWonal mathematics textbooks is
that of pZanning the solution. Due toTimilarities in content and
structure among problems of a given "type," plans may often be asso-
ciated with problem types; and possible plane may be included in the
schemata which we try to develop in students.

A plan tor the "river travel" problem type above should include:

1. A drawing of the situation, presenting Pier A, Pier B, the
river, the distance from A to B, the direction of the current,
and so on.

A
current

river

(Note that assumptions and/or idealizations are already being made:
e.g., that the river is straight and the current is constant).

2. A statement of relevant quantities such as boat speed, current
speed, distance, and time.

3. A statement of general equations relating relevant quantities
and directions.

4. An instantiation of the equations with the.relevant quanti-
ties, again with idealizations (ignoring wind or changeable
current, etc.).

5. A solution plan for the equations (e.g., substitution).

b. A means of checking the answers.

Note that with the solution plan, particular commitments are made.
These are essential to the success of this approach. Plans include
commitments to the use of speeds, directions, or other material most
important for each problem type. Plans must also include a commitment
to the use of certain equations. Most important is correct equation
instantiation, which relates the relevant quantities and ignores
unnecessary values.

A lesson plan to develop classification and rianning skills in
problem solving follows. This plan, suggested by the Hinsley, Hayes,
and Simon research, may be done in one claps session, or preferably
its methods may be regularly incorporated into class activities.
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Lesson PZan 4: Developing Plans

Select a heterogeneous group of 20-30 word problems. Several prob-
lems that students have seen before and some entirely new ones should be
included. Put each problem on an individual card.

Ask the students, individually or in small groups, to put the prob-
lems into classes by problem type, such as river travel, money, and so on.
Check the problem classifications. Are there some problems that defy
grouping? Put these in a separate category. Then ask the students, on
new cards, to make general plans for solving each group of problems.
These plans should include:

(a) Appropriate cartoons or drawings.

(b) Assumptions made in each group.

(c) Equations associated with each problem type.

(d) Any clues that might be helpful in equation instantiation.

(e) Any equation-solving information that might be helpful, and

(f) All appropriate checks for each problem type,

The students may then attempt to use their plans to solve the given
problems.

2, Teaching Non-Routine Problem Solving
through Analysis of Structure

The concept of problem structure discussed in Chapter IV is applied
here to the teaching of problem-soIving skills apart from the problem
types of the previous section. The lesson plans in this section consist
of games presented to students for play and analysis. The objectives
are for the students (a) to discover the structure of the problems,
(b) to relate sets of problems to each other when they have similar
structure, and (c) to ass6ciate with each problem one or two heuristic
processe6 that may be used in solving that problem. The selection of
problems will generally be confined to games already presented in this
book. The approach presented here is readily applicable to other games
and puzzles.

Table 1OA.1 summarizes the problem structures and associated
heuristic processes frr several selected tasks as they were developed
in Chapter IV. From the table and the discussion that follows, clues
for generalizable methods of associating problem-solving processes
with problem structure are given. These clues suggest the necessity
of carefully selecting and analyzing problem tasks prior to classroom
presentation and the necessity of actual demonstration of the analysis
process to the students. The view that experiencing the entire task
environment (including false starts, loops, blind alleys, symmetries,
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Table 10A.1 Game Structure and Teaching Heuristic Processes

State-Space
Problem Representation

Pails of Water (cf. Problem 4.1)

You are at the bank of a river with two pails. Figure 4.1
The first holds exactly three gallons of water,
the second five gallons, and the pails are not
marked for measurement in any other way. By
filling and emptying pails, or by transferring
water from pail to pail, find a way to carry
exactly four gallons of water away from the
river.

Missionaries & Cannibals (cf. Problem 4.2)

Three missionaries and three cannibals are on
one bank of a river, with a rowboat that will
hold at most two people. How can they cross to
the other side of the river, in such a manner
that tdssionaries are never outnumbered by
cannibals on either riverbank?

Missionaries & Cannibals, One Rower (cf.
PYsoblem 4.3)

Figure 4.2

(Same as above, with the additional condition Figure 4,3
that only one cannibal knows how to row.)

Jealous Husbands (cf. Problem 4.9)

Three husbands and their wives are on one
bank of a river, with a rowboat that will
hold at most two people. How can they cross
in such a manner that no wife is ever in the
presence of a man other than her husband on
either riverbank, unless her husband is also
present?

Tick-tack-toe

The opposing players alternately mark
their choices of vacant positions in the
3x3 game diagram with X's and O's respect-
ively. The goal is to obtain possession of
three squares in a row, horizontally, vert-
ically or diagonally.

4 4

Figure'4.8

Figure 4.9

Heuristic
Process(es)

Subproblem Decompo-.

sition
Working Backwards
Trial & Error

Trial & Error
Working Backwards

(Utilization of
Forward-Backward
Symmetry)

Subproblem Decompo-
sition

Trial & Error
Working Backwards
Related Problem

Trial & Error
Working Backwards
Related Problem

Symmetry

continued
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Table 10A.1 (continued)

Problem

Number Scrabble (cf. Problem 4.6)

The integers 1,2,...,9 are written on slips
of paper. The opposing players take turns,
each selecting one number at a time. Neither
player may select a number already taken. The
goal is to obtain exactly three numbers add-
ing to fifteen.

Jam (cf. Problem 4.7)

The two players have different colored pen-
cils. each in turn colors a straight line in
the given diagram along its entire length. The
goal is to obtain three lines in ones own
color intersecting at a single

Tooer of Hanoi (cf. Problem 4.11

State-Space
Representation

Heuristic
Process(es)

Figure 4.6(a) Symmetry
(isomorphism] Related Problem

Figure 4.6(b)
[isomorphism

Four concentric rings are placed in order of
size, the smallest at the top, on the first of 4.15.
three pegs. The goal is to transfer all of
the rings from the first peg to the third in a
minimum number of moves. Only one ring may be
moved at a time, and no larger ring may be
placed above a smaller one on any peg. (The

problem generalizes to n rings.)

Symmetry
Related Problem

Figures 4.12 and Subproblem Decompo-

Tea Ceremony (cf. Problem 7C.1)

A host, an elder, and a youth participate in
'the ceremony. They perform four tasks, listed
in ascending order of importance: feeding the
fire, serving cakes, serving tea, and reading
poetry. The host performs all the tasks at the
outset: the tasks are transferred back and
forth among the participants until they are
all performed by the youth. Only one task--the
least important a person is performing--may be
moved at a time, and no one may receive a new
tatk unless it is less important than any he is
then performing. The goal is to transfer the
tasks from host to youth in the fewest moves
possible.

Elde

4 4 2

sition
Symmetry
Generalization
Recursion

Tower of Hanoi board

Same as Tower of
Hanoi

[isomorphism]

Host

Subproblem Decompo-
sition

Symmetry
Generalization
Related Problem

Youth
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,and so on) is an essential part of learning problem-solving processes
Is implicit in the lesmon plans. Explicit discussion of which heuris-
tic processes are appropriate for a given problem, and why, is essen-
tial to this method.

Lesson PZan 5: :ick-tack-toe (1)

Divide the class into groups of four students. Give each group
the task of analyzing tick-tack-toe (naughts andcrosses). This will
perhaps best be done by having each group play the game, two students
against the other two. The object of the task is to 4iscover winning
and drawing strategies. This can be done by keeping fixed for one
group the use of the symbol "X" and first move; the other group should
throughout play use "0" and take the second move. Paper and pencil
should be used to record and test different strategies. It can take
more than half an hour for groups of students to enalyze even a well-
known game such as tick-tack-toe (Gardner, 1959a).

Ask each group of students to prepare a short analysis of the
problem. They might break their analysis into (1) strategies for
player with first move, and (2) strategies for player with second
move.

Then ask several groups of students to present their strategies
and analyses of tick-tack-toe. If help is needed, hint At the symmetry

in the problem. Ask such questions as (1) How many different first
moves are there? and (2) How many are essentially different? Strate-
gies may take the form of rules such as: (1)."If I am second and first
move takes the center, I must take a corner (any corner) to avoid losing,"

or (2) "If I am first, my best move is the center or the corner, because
make a compilation of these rules from the.students.

Answers to the following should be obtained by the end of the
activity:

1. How many possible first moves are there in tick-tack-toe?
(9) How many different (i.e., unique) first moves are
there? (3; a corner, a side, and the center,)

2. How many unique second moves.are there for each first move?
For example, if first move is the center, there are only
two different responses, a corner or a side.

The point should be made that strategies for winning (or not losing)
are built on the previous two points. It is nearly impossible (for
humans) to understand and successfully play tick-tack-toe without strate-
gies built upon these. Discuss (1) and (2) above and the nution of
symmetries in the problem. Describe how "different" states of the
problem environment may be "equivalent" by symmetry.

4 3
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Lesson Plan 6: Tick-tack-toe (II)

Divide fhe class into groups of four students each. Introduce
"Number Scrabble" as presented in Table 10A.l. Let students oppose
each other in the play of Number Scrabble; have them (as with tick-
tack-toe) analyze this game and prepare sets of winning strategies.

Ask each group of students to write out a set of strategies for
playing Number Scrabble. What should the first player do to win? Is
a win guaranteed for either player? Are there strategies for drawing?
If students have trouble analyzing Number Scrabble, have them proceed
as follows:

1. Fix the first selected number (say 5).

2. What responses are there to this first selected number?

3. What responses are there to the combination of moves
described above?

4. Can strategies be based on even numbers or odd numbers?

If students are having trouble analyzing Number Scrabble, ask them
to figure out all of the different combinations of three numbers that
add to 15. These are, after all, the goal combinations. They might
get an array like this:

2 + + 4
1 + 8 +

2 + 5 + 8
4 + 5 + 6

2 + 7 + 6
8 + 3 + 4

3 + 5 + 7
1 + 5 +

Have student try to arrange this array to show how many times or ways
each number May be used to arrive at a goal. For example, if 5 is
picked by the first player, only four possible sum combinations remain
for the second player.

If the students cannot discover an arrangement of the array,
suggest the "magic square" arrangement as presented in Figure 4.6(a).
What patterns now emerge?

The following points should be made:

1. How many unique first moves are there? (three: an even
number, 5, or an odd number excluding 5.)

2. How many unique responses to each different first move are
there?

Discover the tick-tack-toe and Number Scrabble isomorphism.
Use this relationship to help describe winning strategies.

4. Discuss hidden problem symmetry, and states equivalent by
symmetry.

41 4
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Lesson Plan 7: Tick-tack-toe (III)

Divide students into groups of four. Introduce "Jam" as presented
in Table 10A.1, and let students oppose each other in the play of Jam.
Again ask the students to discover winning strategies. "What is the

best first move? Which line(s) go through the most points? How is the

game related to tick-tack-toe?"

If students have trouble discovering winning strategies with Jam,
suggest the procedures of the preceding lesson plans, and finally point
out the isomorphism to tick-tack-toe (see Figure 4.6(b) ). Ask the

students to seek answers to questions such as: (1) How are the ways of
winning in tick-tack-toe and the eight dots in Jam related? and (2)
How do the nine (distinct) first moves in tick-tack-toe relate to the
lines in Jam?

Lesson Plan 8: The Wssionary-Cannibal Problem (I)

The students may work as individuals or wichin small groups. Give
them the missionary-cannibal problem (Table 10A.1) to solve, and have
each student use pencil and paper to record all moves.

Discuss problem representation and the missionary-cannibal problem.
Have the 4atudents draw their own "map" of ,the situation. Perhaps it

will take this form:

river

Eventually the students should describe and create for themselves the
complete state-space representation of this problem (Figure 4,2).

Discuss the strategies which are helpful in solving the missionary-
cannibal problem. Ask students to attempt each of the following strate-
gies, and then discuss them: (1) divide the problem into subproblems;
(2) work backwards from the goal; (3) trial and error (with and without
backing up). Attempt to determine how appropriate each strategy is for
the problem.

Lesson Plan 9: The 1,gssionary-Cannibal Problem (II)

Give the students the missionary-cannibal problem for analysis,
with the constraint that only one cannibal can row the boat. Have the
students work in small groups or as individuals as they "play" and
analyze the game.

Discuss the problem representation of this version of the problem.
It is necessary to single out, by means of a special symbol, the one
cannibal that can row.

415
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Again have students construct, by trial-and-error, the complete
state-space representation of the problem (Figure 4.3). Compare the
state-space representation of this lesson with that developed in the
immediately preceding lesson. Discuss again the three strategies
mentioned above.

An additional.lesson plan related to these problems can easily
be developed using the "Jealous Husbands" problem (Table 1011.1).
Then consider the missionary-cannibal problem again, and ask what
would happen if the constraint that "missionaires are never out-
numbered by cannibals on either riverbank (for fear of.the
missionaries being eaten)" is replaced by the constraint that
ft cannibals are never outnumbered by missionaries on either riverbank
(for fear of the cannibals being converted)." How would this change
affect the state-space representation? The solution strategies?

Ask students to create further isomorphs for the missionary-
cannibal and the Jealous Husbands problems. Discuss the state-space
representations and successful solution strategies for these new
problems.

Lesson Plan 10: The Water Transfer Problem

Present students with the "Fails of Water" problem as given in
Table 10A.1. Have them work in small groups or individually as they
solve and analyze the problem.

Devise a representation for the sequence.of steps in solving this
problem. After the students have constructed their own state-space
representation, let them compare it with that given in Chapter IV
(Figure 4.1).

Discuss the following strategies for solving this problem: (1)

the trial-and-error approach; (2) working backwards from the goal;
(3) dividing the problem into subproblems,

Now ehange the problem so that the pails hold six and ten gallons.
Can you get a measure of eight gallons? How does this proble9,relate
to the first one? Will the same strategy work on each problem? How
are the state-spaces of the two problems related?

Could pails of six and ten gallons be used to get a final pa41
of three gallons? If so, how? Is this problem related to the two
problems discussed already in this lesson?

Lesson Plan 11: The Tower of Hanoi (r)

The objective for this lesson is the analysis of the four-ring
Tower of Hanoi problem. The students may work as individuals or in

small groups. If possible, give the students the Tower of Hanoi game

116
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boards for use during their analysis. Alternatively, students may
easily make a Tower of Hanoi game by cutting four seriated circles
of paper and placing them over three X's marking the posts.

Let the atudents play the Tower of Hanoi game and have them
devise a sequence for transferring the four rings from peg A to peg
C in the least number of moves. Then present the students with a
state-space representation of the Tower puzzle (Figure 4.12). Have
them verify the representation to their own satisfaction. Have them
sketch their solution attempts as paths through the state-space repre-
sentation.

Then analyze solution strategies for the four-ring Tower of Hanoi
puzzle. How does trial-and-error work as a strategy? Can you work
the problem backwards from the goal? How may the problem, be divided
usefully into subproblems? Is this an efficient method of solution?
Are there any other strategies?

Lesson PZan 12: The Tower of Hanoi Probiem (II)

Introduce the "Tea Ceremony" problem as shown in Table 10A.l.
Have the students work individually or in small groups as they solve
and analyze this probleM. Have them devise a state-space representa-
tion for the Tea Ceremony problem. Suggestions should be given for
labelling states and moves.

Compare the state-space representations of the Tower of Hanoi and
the Tea Ceremony puzzles. How are they similar? The students should
be able to establish that these two problems are themselves isomorphic.
The solution strategies of either problem should be translated into
equivalent strategies for the other.

Finally, the class should try to construct another isomorph of the
Tower of Hanoi and the Tea Ceremony problems.

3. Conclusions

Two very different applications of the analysis of problem struc-
ture to classroom teaching have been developed. The first is based on
the content and structure characteristics associated with the classifi-
cation of routine problems into "types" (see also Chapter III). The

second,is based on the explicit (state-space) analysis of non-routine
probleMs and games, as developed in Chapter IV. In both applications,
we have observed how explicit attention to problem structure variables

may assist in teaching insightful problem solving in the classroom.
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Heuristic Behavior Variables in Instruction
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1. Introduction

As we have seen in Chapter V, there are quite a number of valuable
heuristic approaches to problem solving in mathematics. There is also
mounting evidence that careful instruction in problem solving via heur-
istic strategies cannot only provide an opportunity for stimulating
classroom discussion, but can demonstrably enhance students' problem-
solving performance (Goldberg, 1975; Landa, 1974; Lucas, 1972; Schoen-
feld, 1978). Unfortunately, the mastery of individual problem-solving
techniques is not enough to make for good problem-solving performance;
when there are a number of potentially useful heuristic processes_to
try on a problem and only one or two of them will help to solve it, the

ability to select the right process will be a factor of critical
importance in problem-solving performance.

We may make the following analogy. If we think of a problem as
a "lock" and of the appropriate heuristic process as the "key" to that
lock, the art of problem solving v-,:a heuristic processes is the art of
finding the right "key" for a particular lock (and then using it, of
course). If there were only a few keys, there would not be much of a
problem; one could try all of them, until one that "fits" is discovered.
Imagine, however, that there are a large number of keys. If there is
no means for selecting the "right" key from among them, one might very
easily squander an enormous amount of time trying the "wrong" keys.
One might run out of time before finding the "right" one, or might
give up in frustration over a series of unsuccessful attempts. In

practical terms, then, the problem solver must

a) know how to use the right "keys," and

b) be able to select the "right key" efficiently.

*This work was supported by a Sloan Foundation Grant while the author
was at The Group in Science and Mathematics Education, U. C., Berkeley.

4 4-431-

t+'"



-412-

This chapter is devoted to a discussion of these two goals. We

shall address the following two major questions about problem solving

in mathematics via heuristics approaches:

I) What instruction must the teacher provide, so that the
student has the capacity to use an heuristic process
correctly, when the student knows that it should be used?

2) How can the teacher help provide the student with infor-
mation which will help the student select the appropriate
heuristic approaches to particular problems or classes of
problems?

As we saw in Chapters I and V, heuristic processes have two

aspects. On the one hand, we find an heuristic process defined as
?I a general suggestion or strategy, independent of any rarticular
topic or subject matter, which helps problem solvers approach, under-
stand, and/or efficiently marshall their resources tn solving
problems" (Schoenfeld, in press). This would seem to make the appli-
cation of heuristic processes independent of the nature of the

problems to which they are applied. On the other hand, McClintock
emphasizes in Chapter V that there often inheres in particular prob-

lems or classes of problems an amenability to approach by particular

heuristic processes.

We shall see that these two perspectives on heuristic behavior
give rise to two classes of heuristic processes, both of which can

help the teacher to approach question (2) above. Those problems, or
classes of problems, which give signs of being amenable to particular
approaches may be said to "cue" the reader to the use of those pro-
cesses; the approaches taken may then be called "cued heuristic

processes." If the teacher can recognize these "cues" and pass them
on to students, the students can then have a direct means for select-

ing the right "k6ys" for particular problems. This provides a direct
and practical application of the themes discussed in Chapter V; we
will discuss it at length, with examples, here. Now the question is:
What about those tasks which do not cue specific heuristic processes?
Is the student then left merely with a collection of potentially
applicable heuristic processes from which to choose randomly?
Fortunately, the answer is "no." We shall see that, in the absence
of "cueing," heuristic processes often cluster consistently into
groups which are usually applied at particular stages of problem

solutions. There are "understanding the problem" heuristic processes,
"checking the solution" processes, and many others.

Since the choice of these processes depends on the stage of the
problem solution, we shall call these stage heuristic processes. At

any stage of a problem solution, only a subset of potentially useful
heuristic behaviors is likely to be appropriate; thus the result of
focusing on stage processes is to allow for focusing on that set of
processes most likely to be of assistance. In terms of our analogy,
it allows for the selection of a reasonably-sized subset of "keys"

having the greatest chance of "unlocking" a problem.

44v
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,
We shall provide a discussion of "stage" processes, and a frame-

work for teaching them, at the conclusion of this chapter. We proceed

with a discuss1on of question (1): What instruction must the teacher
provide, so that the student has the capacity to use an individual
heuristic process correctly, given that the student knows that it
should be used?'

2. Teachin& Particular Heuristic Processes

It is easy to underestimate the complexity of individual heuristic
processes, and to underestimate-as well the amount of effort which must
be invested in teaching any particular heuristic process before one can
expect students to use it competently and reliably. In Sections 3 and
4 of this chapter, we discuss a variety of hluristic processes. In

this section, we shall focus on one particular process at some lenIth.
Our purpose is to indicate some of tbe complexities which may be 'den

in apparently simple statements of processes, and to point to -
which must be taken in teaching them. The heuristic process
for this discussion is perhaps of "average" complexity. There are
simpler ones, scitme of which are discussed in Section 3; but there are
also many substantially more difficult heuristic processes.

The following heuristic process will henceforth be referred to as
the special cases process:

If you do not feel that you have a solid grasp on what the
problem asks of you, or of what the answer mipht be, con-
sider a variety of special cases. You can often "discover"
the answer, or see a pattern that suggests how to obtain
it.

Each of the following fiye problems can be approached by use of the
special cases process.

10B.1 Find the sum of the series S = 1+3# 5 4- 7 + +

(2n-1) and prove that your answer is correct.

10B.2 Let P(x) = ax2 + bx + c and Q(x) = cx2 + bx + a,

where a, b, and c are non-zero. What is the rela-

tionship between the roots cf P(x) = 0 and Q(x) =0?
Prove your answer.

10B.3 Two squares, each of Zenath s on a side, are placed
so that the corner of one square ties on the center
of the other, as shown. Describe in terms of s the
range of possible areas representing the intersection

of the two squares.
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103.4 Prove that in a circle, the central angle which
subtends a given arc is twice as large as-any
inscribed angle which subtends the same arc. That

is, show that in the diagram, B = 2A.

103.5 Of all the rectangZes which have perimeter 40, which
has the largest area?

Let us examine the way in which the special cases heuristic pro-
cess is used in the solution of each of these five problems. In
Problem 103.1, to consider special cases means to compute the desirA
sum for values of n = 1, 2, 3, 4, and so on until a pattern is dis-

cernible. The calculations appear as follows:

1

1

+ 3

1

+ 3

+ 5

1 =

+ 3 =

+ 5 =

+ 7 =

1,

4

9,

16,

.and at this point, the student might guess the next entry,

1 + 3 + 5 + 7 + 9 = 25,

as the pattern of squares on the right becomes clear. Having "dis-
covered" that the sum of the first n odd numbers is n2, the problem
solver can proceed to verify it by induction.

The application of the special cases process is quite different
in Problem 103.2. The initial temptation in this problem, prompted by
the phrase "the roots of P(x) =0 and Q(x) ,-- J," is to look for a rela-
tionship between-

-b *42 4ac -b ± 1b2 4ac
and

2a 2c

a temptation to which the vast majority of problem solvers (both expert
and novice) examAned by this author have succumbed. The relationship,
however, is obscure. If, on the other hand, one uses the special cases
process in the following way, the answer becomes apparent. Choosing
as special cases two or three polynomials which are easily factored,

one finds that:
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the roots of x2 - 5x+ 6 a 0 are 2 and 3; those of 6x
2-

5x+ 1 a 0

1 1
are

2
and

3

the roots of x2 +7x+12 a 0 are -4 and those of 12x
2+7x+1

a 0

are - -4- and - ."

the roots of x2 - 3x - 10 a 0 are 5 and -2; those of -10x2 - 3x + 1 a 0

1 1
are 3 and - .

It is not hard to see lhat 'the roots ofQ(x) a. 0 are the reciprocals of the
roots of P(x) a n in each case. With a little more work, the argument
can be completed. We shall return to this problem atthe end of this
section.

In Problem 10.3, one uses the special cases process to help one
fi suspect" the correct answer. There are two special cases which are
easy to calculate: the case where the sides of the two squares are
parallel, and the case where a side of the second square'passes through
a corner of the first. After examining these, one might suspect that
the answer, as it is here, is always s2/4. If one notices the symmetry
of the two special cases, one might see that there is a symmetry argu-
ment to prove the general case (see Figure 10B.1).

In Problem 10.4, the application of special cases once again takes
on a different fcrm. The relationship between the angles A and B in

Figure 108.4 is elusive. If, however, one looks at a particular case,
the caseAn which one side of the inscribed angle is a diameter of the
circle, the relationship is clear (Figure 10B.2). Furthermore, it is

easy to use the special case to establish the truth of the general case.
A more complete discussion of this problem may be found on pages 104-
106 of Polya's Mathematical Discovery, Vol. I (Polya, 1962).

Finally, in Problem 10.5 a.variety of special cases which range
from short and wide rectangles (say 19 x 1) C,rough "squarish" rectan-
gles and then through tall and narrow ones (say 1 x 19), will provide
students with an experiential basis for believing that the square is
the answer. In later problem solving, this experiential foundation
can provide a "real=world" check against some incorrect answers intro-
duced by computational procedures.

We have seen, then, that the applications of the speciaZ cases
heuristic process are many and varied. There is not nearly enough
information in the given statement of the process to provide for all
of these interpretations; rather, the statement is a convenient label
for a set of similar procedures. If we expect students to be able to
use the process, it will have to be illustrated by diverse examples,

in much the way it has been here. In addition, students will have to
be taught any heuristic process with the same degree of seriousness
and attention that would be used with any other topic: the quadratic

formula, for example. This means in particular that the heuristic



Figure 10,1 Diagrams for Problem 2013.3

special
cases

the "general"
case

Figure 1013.2 A Special Case for Problem 1OB.4
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process should be explicitly labeled as an important technique
("Examining special cases is a valuable problem-solving technique.
You should consider it when...");.ips description should be written
in full on the blackboard and stressed; examples of its use in various
ways should be provided and students should be given practice-in apply-
ing it to problems; students should be reminded to use it whenever it
is appropriate on their homework and "scolded" when they do not; and
when the process is used to advantage in the classroom, its use should
be pointed out. With less training than thisc we would not expect
students to become proficient in their use of the quadratic formula;
with less training, we cannot expect'them to apply any heuristic pro-
cess well.

4..(3

Finally, we should stress the difference between the process and
the product of problem solving, and the different emphases to which
these lead in instruction. The product of mathematical thinking is .

the solution to a problem, usually explained in logical and coherent
form. As such it can be elegant and mathematically correct, but show
little trace of the reasoning which produced it. For example, the
following might be a textbook proof that th2 roots of P(x) -= ax2 +bx+c 0
and Q(x) z cx2+bx+a -0 are reciprocals (see the discussion of Problem
10.2):

"Suppose that xo is a root of P(x) -0, or that .ax02-+ bxo+c z 0
Since c 0 0, xo A 0. Now

)xo
1 c bx0 ax022+1 )+a . ----7+ -----2. +-----2 al
xo xo xo xo

ax02 + bx0 + c 0.

x02
xo2

1
since we know that xo #0. Thus if xo is a root of P(x) z 0, 5t- is a root

of Q(x) z 0; and the roots of the two equations are reciprocalS."

This algebraic tour de force is impressive and incontrovertibly
correct, but inaccessible to all but the few students who can figure
out where it comes from. If we expect students to be able to construct
an argument such as this, we will have to teach them the process that
leads up to the argument; even better, we should guide them to create
the argument themselves. For this problem, a classroom discussion might
begin with students factoring the special cases discussed for Problem
10.2, and conjecturing that the roots of the equations are reciprocals.
At that point, the class and teacher can together translate the conjec-)
ture into an algebraic argument. Perhaps the idealized discussion would
proceed something like this:

Teacher: "We can have guessed that the roots of P (x) z 0 and Q(x) = 0

are reciprocals. Can someone put that into a form
that we can prove, such as, 'if something is true,
then something else is true?"
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"How about 'If a number is a root of P(x)=0, then its
,reciprocal is a root of Q(x)=0'."

"That's good, but working with words is difficult.
Can you translate the words 'number' and 'recipro-
cal' into symbols we can use?"

"Yes. We can,try to prove that if xo is a root of.
P(x) = 0, then l/x0 is a root of Q(1) =0."

"Very good. Now, what does it mean for x0 to be a

root of P(--)=0?"

Student: "It mean', that P(x0) = 0."

Teacher: "How can we use that in your last statement?"

Student: "We can try to prove that if P(x0) =0, then Q(l/x0) = 0."

At this point the proof given above fits into a nice context, and
n makes sense"; the student can understand where it came from and why
one might think of it.

3. Cues Associated with Heuristic Processes
in Problem Solving

In this section we shall discuss some "cued" heurist.ic processes.
More precisely, we shall discuss certain classes of problems which are
amenable to particular heuristic approaches,fand contain indications-
of that amenability in their problem statements or problem structures.
A recognition of such cues will enable the knowledgeable problem solver
to select an appropriate approach to a problem with dispatch, thus
making the entire problem-solving process more efficient. By systema-
tically identifying such cues both in particular mathematical subject
areas and problem solving in general, and passing the cues on to
students with the kind of training that was discussed in Section 2,
the teachee can substantially enhance students' problem-solving per-
formance. Let us study some examples.

10B.6 What is the ,-szen of the series
ow

1 1 1

(n)(n#1)

Prove your answer.

108.7 Let S be a set which contains n elements. How
many different subsets of S are there, including
the empty set?

4 5- 5
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The reader experienced at "exploiting similar problems" may imme-

-diately note the parallels between Problems 203.6 and 103.1, and pro-

pose a similar heuriF;tic approach. For students who see the problem
out of context, however, it is not at all clear that mathematical induc-

tion is the appropriate means of approaching the problem. In a course

recently given by the author, six of eight undergraduate mathematics
and science majors failed to solve 103.6 when it was assigned, and five

of seven students with similar backgrounds failed to solve this problem
in a problem-solving experiment conducted by the author (Schoenfeld, to

appear). In that experiment, after working 20 problems, four of which
were similar to 105.6, the seven students were given 103.7. None of

the three "control" students solved it. All of the "experimental"
students, who had had similar practice but in addition a list of heur-

istic processes including the one described below, solved 105.7. The

problems just given all yield to the following cued heuristic process:

If there is an integer parameter, Zook fbr an inductive
argument (Cued induction).

Is there an "n" or other Parameter in the formula which
takes on iateger values? If so, this is the cue which
should suggest the use of mathematical induction. To

find a formula for f(n), one might try one of these:

A) Calculate f(1), f(2), f(3), f(4), f(s); list them in
order, and see if there is a pattern. If there is,
it.might be verified by induction. (Note the use of

special cases.)

B) See what happens as you pass from n objects to n 1.

If you can tell holw to pass from f(n) to f(n +1), you
may build up f(n) inductivgly.

Prototypic examples for the use of cued induction are easy to find;
we have seen Problems 103.1, 103.6, 108.7, and can add these:

1013.8 How many different straight lines (at most) can
be drawn through n points in the plane?

103.9 Prove that the term 2n32n - 1 is evenly divisible
by 17, for any positive integer n.

This collection of five problems could serve as the basis for a class
hour devoted to cued induction. The first three problems illustrate
the use of technique (A). We have seen the pattern in 108.1 and the
inductive proof is easy; the pattern is almost as clear in 108.6 (the
answer is nRn+1) and the argument by induction is straightforward;
the answer to 103.7, 2, also emerges as a clear pattern. The argument
by induction in Problem 103.7 and the remaining two 1:,oblems, can be
used to illustrate the use of technique (3).

4 56
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In Protplem 10.7, assume that a set with n elements has 2n subsets.
Now we may ask what happens if we add an1(n+1)st object, called X. For

each subset we had before, we now have tulb: the subset by itself, and
the subset augmented by X. Thus the nuaaber of subsets has doubled,
giving us 2.2n 211+1, which is what we wanted to show.

In Problem 10.8, we can ask the following: suppose there are f(n)

lines through n points. How many lines are added when the (n+1)st is
added? The answer is easy to see (draw a diagram): there is one new
line from the new point to each of the n points already there. Thus
f(n+1) = f(n) + n, Since f(2) = 1, f(3) = 1 + 2, f(4) = 1 + 2 + 3, and
in general f(n+1) = 1 + 2 + 3 + + n. Again by induction, the sum
is n(n + 1).

2

The application of induction to Problem 10;9 is slightly differ-
ent. First, the problem is simplified if one recognizes that 2113211 can
be written as 2n . 9n = 18n; the problem can then be restated as "Prove
that 18n - 1 is always divisible by 17." This can be proven without
induction if one recalls that xn - 1 always has a factor of (x-1), but
it is instructive to demonstrate the inductive proof. The problem,
using (B), is: "If 1811 - 1 is divisible by 17, how can we show that
18n4-1 - 1 is divisible by 17?" The latter term will be divisible by
17 if and only if the difference is; and since the difference is

(1811+1 1) - (18n - 1) - 18n+1 18112.18n (18 - 1) = 18n (17) ,

we have the result that we want. Incidentally, it would be best to show
students both of the arguments which solve Problem 10.9, and, in
general, as many ways to view a problem as possible. One can never
predict which method of solution to a problem will prove useful when
one encounters a "similar related problem," and it is valuable to have
both a large repertoire of techniques and the flexibility that one can
derive from it. At the same time, however, we should be careful to
note that "cued induction" does not always "work"; in spite of its
similarity to Problem 10B.6, there is no known simple expression for
the sum

1 1+ +
12 22 n2

Our discussion of cued induction has been protracted in order to
present a model of a classroom session for those who might consider
devoting a day to it. The discussion of other cued heuriLtic processes
will be more condensed. Whether or not one would actually choose to
devote a class session to a discussion of cued induction would depend
on a number of factors including the nature of the curriculum, time
pressures, and so on. Even if one cannot take a day to discuss the
process, it should be clear that, when problems such as these arise in
the classroom, it is worth using them as prototypes and stressing the
use of thc . process in general. The process is easily recognized and
enhances student performance when used. With that, we turn to the next

cued heuristic process.
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Consider a similar problem with fewer variables.

If the problem has a large number of variables and is too
confusing to deal with comfortably, construct and solve a
similar problem with fewer variables. You may then be able

to:

A) Adapt the method of solution to the more complex
problem, or

B) Take the result of the simpler problem and build up
from there.

Prototype examples for the fewer variables heuristic process are the
following:

105.10 Prove that if a
2

4- b
2+c 2 +d2 =ab+bc+cd+da, then

a = b = c = d, and

105.11 Prove that for positive real nurnbers x,y,z,

(a: +1)(y
2+1)(z 24-1)

> 8.
xyz

The cue for these processes is the presence of several variables, all

of which enter symmeerically ilito the problem. In Problem 105.10,
the profusion of symbols makes it difficult to see'what is happening.
The analogous two-variable problem, in view of the fact that the right-
hand side of the equation is cyclic, is: Prove that if a2 + b2=ab+ba,
then a = i. This is easy, of course. Moving all the terms to the left
and factoring, we obtain (a - b)2 = 0, which gives us the desired
result. Now the question is: how can this be exploited in the original
problem? Since we will need that a = b, b = c, c = d (and perhaps
because the equation is cyclic, d = a in good measure), and will need
all of that information in one equation, our hope is that the method
of the similar problem will work here and give us an equation like

(a - b)2 + (b - c) + (c - d)2 + (d - a)2 = 0.

Fortunately, it does.

In Problem 105.11, there is again a morass of symbols. Since x,
y, and z all play the same role on the left and we have three similar
products, it is reasonable to examine the one-variable problem "prove

that x2 + I 2." This is easy to proveby algebra [x2+1> 2x if

and only if (x - 1)2 > 01 or by calculus. Substituting y and z for x
and taking the product gives the desired result.
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One can build understanding in other ways as well. For exampl

105.12 Prove that for p, q, r, and s between 0 and 1

(1 p)(1-q)(1-r)(1-s) >1-p-q-r-s.

The appropriate place to start is by showing that

(1 q) > 1 - p - q.

Multiplying both sides of this equation by (1 - r) and comparing terms
will yield the three-variable version of the inequality, and multiply-
ing both sides of that by (1 - s) and comparing terms will give the
desired result.

Again, whether or not one has the time or desire to devote a
class day to this process is an individual matter. But when problems
such as these occur in the classroom, it is easy and beneficial for
the teacher to point out to the students that what they are seeing is
not an isolated "trick," but rather a coherent process which was
n cued" by the form of the problem, and which the students themselves
can learn to recognize and use.

Develop an argument by contradiction ue contraposition (cuad
contraposition).

Consider argument by contradiction or contraposition, if:

(A) There is either an explicit or implicit
ft negative" conclusion in the problem statement, or

(B) The conclusion is not at all apparent from what is
given, and one obtains more to "work with" by negating
the conclusion, or

(C) The word unique appears in the conclusion.

Contradiction and contraposition are more than forms of argument.
They are means of heuristic thinking which allow for the restructuring
of problems in equivalent but sometimes more accessible formulations.
Often (though certainly not always) there are cues in the problem
statement which lead one to suspect that this type of argument might
be appropriate.

The following problems are prototypes for the cued contraposition
heuristic process:

105.13 Prove that there is an i ite number of primes.

105,14 Shaw that the roots of P(x) --=x3 +6'x
2
+11x+ 2 = 0 are all

negative.
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203.15 Let 151 and P2 be consecutive prime numbers greater
than 2, If

Q 1/2(P 4. P2),

prove that Q must be composite.

103.16 Show that the identity element in a group is unique.

In Problems 103.13-14 there are, respectively, implicit and èiicit
negatives in the desired conclusions. In.the first, "infinite" means
"not finite." If we turn the question around and ask, "What if there
were only a finite_number of primes," we have the beginning of one of

the most famous proofs in mathematics. It appears in Euclid's Elements,
and is more than two thousand years old.* Similarly, we can turn the
question in 103,14 around, and ask "What if we had a non-negative number
x which satisfied the equation?" Since any power of x is positive or

zero,

x
3
+ 6x

2
+ llx + 2 = 0

means (a sum of non-negative terms, plus 2) = 0

or
(a number greater than or equal to 2) 0,

which is impossible,

In Problem 103.15, there is very little.information to go on, We

want to show that Q is composite, meaning C.at we need to find a factor

of it. But where would a factor of Q possinly come from? Recognizing

this, we might ask: what if Q is not cmposite? Q is then a prime

number, Being the average of P1 and P2, Q is thus a prime which lies
between P1 and P2. Thus 131 and P2 cannot be consecutive primes.

We can almost formulate the response to Problem 103.16 as part of a
general rule: "If one is asked to demonstrate that something with a
given property is unique, one should assume that there are two distinct
objects with that property and demonstrate that they must be identical
or that there is a contradiction," In this case, picking two distinct
identities el and e2 leads to the argument el = el(e2)=(el)e2 = e2.

The last problem in this section is the following:

108.17 For what values of t does the system of simultaneous
equations

i

x2
halm either 0 , 1, 2,, , 4, or 5

(x-t)2 +y2 soLutions?

*If there were only finitely many primes Pl, P2, ..., Pn, then the number
(P1P2P3.--Pn+1), heingNlarger than Pn, is composite, but none of the

primes P P2,...Pn are factors of it, a contradition,
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Figure 1OB.3 Graphe for Problem 1013.17

x
2

- y
2

= 0

(x - t)
2

y
2
= 1

for various t.
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The algebraic solution to this problem is quite complex and often causes

computational difficulties even for experienced mathematicians. The

analysis is straightforward, however, if one thinks to use the follow-
ing cued process.

Draw graphs of simple algebraic expressions (Cued Graphing)

(This is a special case of the general heuristic process Draw
a diagram if at all possible.)

The graph of the first equation is a pair of straight lines passing
through the origin at 45° angles to the x-axis; the graph of the second
is a circle of radius 1 with center (t,0). The only difficult point is
in determining the value of t at which the circle is tangent to the two
lines, t 4"2" (see Fig. 10B.3).

The cue for graphing in this case is the presence of the equations,
both of which can be interpreted graphically with ease. As is the case
with other heuristic processes, the presence of the "cue" does not
necessarily mean that recourse to the heuristic approach will "work,"

but merely that the approach should be considered. There are many prob-

lems for which graphing might be considered superfluous, but many like
10.17 in which it is helpful.

Finally, we should point out that the above represent a sampling of

the opportunities for classroom discussions about heuristic processes.
There are a large number of "cues" to which we respond, sometimes uncon-
sciously, while doing mathematics. If the teacher can keep an eye on
his or her own problem solving, and try to recognize why he or she is

doing what is being done and what stimulated it, this self-examination
can yield valuable information to pass on to students.

4, "Stage" Heuristic Variables in Instruction

While there is a substantial class of "cued" heuristic behaviors,
as we have seen in Section 3, there are a great many problems (the vast

majority) for which there either are no such standard cues, or for
which we have not discovered standard cues. In order to simplify the

process of selecting appropriate heuristic approaches to problems, we

introduce the notion of "stage" heuristic processes. The idea, in brief,

is this:

All other factors being egual, certain families of heuristic
processes are most likely to be of assistance in problem
solving at particular stages in problen solution.

To develop this idea, we present an elaboration and clarification

of the four-stage scheme (understanding the problem, devising a plan,

carrying out the plan, looking back) presented by Polya and described

in Figure 1.1. We examine some of the heuristic behaviors discussed
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in Chapters V and V/II,B, and array them in such a way as to be

useful in instruction. The arrangement varies somewhat from
that given in earlier chapters; this is a natural consequence of
the fact that we are looking for applications for heuristic behavior
variables to instruction, rather than an elucidation of them for
research (compare with Figure 8B.1).

Figure 1OB.4 presents a schematic overview of the problem-solving
process, presented as a flow chart to indicate the dynamic nature of

the process. The boxes in the left-hand side of the diagram represent
II stages" of problem-solving activity, and the circles the results or
outcomes of that activity. On the right-hand side of the diagram we
have entered the four stager' of Polya's description, and the relation-
ship between that description and the flow chart.

Before we proceed to elaborate on the flew dhart, however, we
should stress that this organization is meant to be practical, and to
be used by the teacher in the classroom (Schoenfeld, 1978). These
points are meant to be discussed openly with students (although not
necessarily in one sitting, and in language appropriate for their
assimilation). For example, the student should be told about the pro-
cesses in ANALYSIS, which we shall examine shortly. It should be made
clear to students that "these are things you should be aware of when
you start to work on a problem," and this theme should be repeated

throughout the course. When a student is "stuck" after reading a
problem, the heuristic processes in the ANALYSIS stage should be
suggested as often being of assistance. On the other hand, if the
student "jumps into" a method of solution without reflection, that
student should be (gently) cautioned that sudh behavior often leads
to misspent energy, and that it might be wise at least to consider

some of the perspectives or heuristic approaches listed under ANALYSIS

(see Table 108.1).

The ANALYSIS stage begins, of course, with the reading of the prob-
lem, and may be said to be successfully completed when the problem solver
has a useful formulation of the problem in a convenient representation,
a sense of orientation and a mathematical context for the problem, and
access to.some mechanisms for a close examination of the workings of the

problem. In a colloquial sense, the student has a "feel" for the prob-
lem and the beginnings of an understanding of what "makes it tick."

With the reading of the problem, there is an often underplayed
(sometimes instantaneous and unnoticed) categorization, or establish-
ment of a mathematical context for the problem (recognition of the
Ifproblem type"). If a problem can be categorized broadly, there may
be access to a general framework within which it can be placed, and (a
bonus!) access to a standard set of procedures, or a ready-made plan

for solving the problem. Thus "this is a mixture problem" entails more
than just recognition, for it may mean that one has a "mixture problem
procedure" ready to apply. Similarly, recognizing that a problem is one
of maximization in calculus tells the problem solver to look for an
analytic representation of a variable quantity, and to use the first

4.63
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Figure 1013.4 A Schematic Overview of the Problem Solving 4rocess
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Table 103.1 Heuristic Processes Associated with ANALYSIS

1. Classifying and establishing a context for the problem

2. Selecting a representation for the problem

3. Drawing a diagram if at all possible.

4. Exploring the conditions: "givens" and "goals".

5. Examining Special Cases:

a) choosing special values to exemplify the problem and
get a "feel" for it.

b) examining limiting cases to see the range of possi-
bilities

c, setting integer parameters equal to 1,2,3,..., in
sequence, and looking for patterns.

6. Looking for preliminary simplifications, through

a) exploiting symmetry,

b) "without loss of generality" afguments, including scaling.

Table 103.2 Heuristic Processes Associated with DESIGN

Organizing the information from ANALYSIS (and EXPLORATION)

2. Structuring the argument

3. Serving as a "master control":

a) keeping track of alternatives

b) monitoring the success of partic4lar approachea.

4. Enforcing an hierarchical (global to local) approach.

465
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derivative to find its maximum. SwArcategorizations can also lead
one astray: witness the large mimber of problem solvers who try
analytic geometry or Heron's formula A m4s(a-a)(s-b)s-c), (where a,
b, c, are sides of the triangle and s =(1./2)(a + b + c)), to solve the
following problem:

10B.18 Find the area of a triangle whose sid'es are 25, 50,
and 75.

Yet such categorizations of problems into "types" are of great value
for the most part, and should be consciously exploited whenever
possible.

Concomitantly, we have within ANALYSIS the use of heuristic processes
to fthoose a cnnvenient representation for the problem. This point can
be made brifly and powerfully to students, by asking them to multiply
the two numbers written in Roman numerals MCDLXVI and EMMDCCCLXXXVIII.
Students should be on the alert during this stage for what the givens
and the goals in a problem are, what One "usually" Can obtain from the
givens and what their role in the problem seems to be, how they
relate to the goals, and whether the goals seem plausible in the light
of wHat is given. If possible, we should provide students with com-
pelling examples of the utility of diagrams. We have already seen two:
Figure 1013.3 provided for a sirlle analysis of the oLlerwise very com-
plex Probleilv1OB.17, and trying to draw a diagram of the "25,50,75"
triangle in Problem 1013.18 might well lead the student to the realiza-
tion that the triangle "collapses." That problem serves as well as an
example for the utility of "scaling." If one thinks of the given
triangle as essentially a "1,2,3" triangle, the odds of seeing that
it "collapses" increase.

"Examining special cases" has already been described at length. We
have thus discusned the major heuristic processes associated with the
ANALYSIS stage. We should point out that these heuristic behaviors
may not occur in sequence; nor are all of them necessarily considered
for every problem or even most problems. Rather, they consist of a
set of behaviors most likely to prove of use and therefore worthy of
consideration at this stage of problem solving. A final example will
indicate the application of ANALYSIS tlo a pvoblem.

. .

10E1.19 Find the largest area of any triangle which can be
inscribed in a circZe of radius R.

After reading the problem, one may make a tentative classification
("This will probably involve calculus."), drew a diagram, and look for
a convenient analytic representation. For the sake of simplicity, one
might decide to look at the unit circle (scaling), and note (without
loss lf generality) that the base of the triangle can be assumed hori-
zontal. By examining a few special cases (and drawing more-diagrams)
the problem solver may realize that, for any given horizontal base, the
isoceletriangle has the greatest height and thus the largest area.
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The problem then reduces to that oi finding'the "right" horizontal
base. At this point, a final choice of representation may be made.
The "plan" is now known rom context: one will express the area as
a function of one variable and maximize using calculus.

The stage following ANALYSIS is called DESIGN, and its components
are listed in Table 1013.2. DESIGN is of a somewhat different nature
than the other stages of problem solving. It is not really an indir
vidual entity Or phase, but rather pervades the entire problem-solving
process. It is during the de'sign phase that one plans a solution, but
there is much, much more. DESIGN is; in a sense, the 'master control"
which monitors the entire problem-solving process and llocates problem-
solving resources in as efficient a way as possible, vel ing good
DESIGN skills is critical for students. These behaviors, overall, are
the consistent .distinguishing marks of good problem solvers. By moni-
toring the way students, work on problems and pointing out to them when
they are or are_not proceeding well, the teacher can have a tremendous
impact on the student:' problem solving.

In a sense, DESIGN is the most subtle and difficult of the aspects
of problem solving to teach. It calls for a sensitivity on the part of
the teacher to the way that students are proceeding through their work
on problems, and a willingness to oversee the entire process. We shall
limit ourselves here to a brief elaboration of the points listed above.

In its simplest form, DESIGN consists of "making a plan." At the
very least, the student should be able to tell the teacher What he or
she is thinking of doing, and why, at both local and global levels.
That is, what will this particular operation result in (local level of
design), and how does that result fit into the solution process as a
whole (global level of design)? If one has a good idea of what should
be done (for example, in a routine mixture problem), little more need
be said. If the problem is complex or novel, however, DESIGN includes
knowing how much.-ANALYsIs is necessary, and'knowing when it is possible
to begin outlining a plan. It means knowing when a plan is insuffi-
cient, and when to so to the next stage, EXPLORATION, for help. It

keeps track of various options, so that there are "fail-safes" if one
particular approach proves more troublesome than might have been
expected. Equally important, it involves keeping track, globally, of
the actions in which the problem solver is engaged, so that they are
not wasted. This usually mestns maintaining some sort of hierarchical
approach: for example, not getting involved in very complex computa-
tions on one part of a problem, if another part is hazy and unresolved.
All too often we have seen a student solve a difficult equation only to
discover that he or she did not know what to do with the answer once it
was found. DESIGN should preclude this. The teacher should ask, and
the student should be trained to ask, to what use any particular action
in which the student is engaged will be put, and whether it is appro-
priate to be engaged in that action at that time. .

Continuing our discussion of Figure 103.4, we see that EXPLORATION
is a very complex stage. It contains some of the most nebulous and
difficult to apply of all the heuristic behaviors. An elaboration and
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exemplification of these would require a full volume. We shall limit
ourselves to a few brief comments.

First, the reader should notice the similarity in organization
between the phases of EXPLORATION which are listed in Table 10B.3, and
.the types of heuristic behavior variables described in Chapter V.

Second, with all other factors being equal, the three phases of
EXPLORATION are such that (in general) success with a Phase 1 heuris-
tic process is more likely to provide direct assistance in solving
the original problem than a Phase 2 process; likewise, a Phase 2 pro-
cess is likely to be of more immediate assistance than one from Phase
3. Of course, if an heuristic process from Phase 3 is "cued," one
tries it as soon as it IA appropriate (and does not wait until the
"right" phase of the exploration stage). In general, these phases
correspond to Polya's "rules of preference" (Polya, 1965).

Third and perhaps most important, all the work done in EXPLORATION
must bp subject to the intelligent management directions coming from
DESIGN. If substantial progress is made with a particular exploration,
the problem solver may return to DESIGN, decide:that the plan for solv-
ing the problem is well-enough formulated, and proceed to implement it.
If new insights are gained as to the mechanisms which "make the problem
tick," the problem solver may decide to re-enter ANALYSIS with this new
information and formulate another approach to the problem almost "from
scratch." One should not be tempted by the separate boxes in Figure
10B.4 to think of the different stages of problem solving as disjoint
entities, for they are interrelated in a variety of complex ways.

The next stage is IMPLEMENTATION. This stage needs little comment,
save for an elaboration of the point that was just made. The alezt
problem solver monitors all phases of the problem-solving process. If

a particular mode of IMPLEMENTATION is tedious, or tremendously involved,
.one may wish to retreat into DESIGN to select an alternative (even if
the one being used is known to guarantee a solution); if there are

."lessons to be learned" or generalizations that may be made, such deci-
sions might profitably bs made ('master control" will decide) before
IMPLE;ENTATION is finished.

Finally, we cometto "looking back," or the stage of VERIFICATION
(see Table 10B.4).

The VERIFICATION processes are straightforward, but they do need
to be stressed with students. Checking over one's solution to a prob-
lem can return high profits for a small investment in time and energy.
Yet students show consistently few signs of reliably checking over
their work--and they pay the price. Of all the heuristic behaviors we
have discussed in this chapter, "looking back" may be the easiest to
teach and the most profitable.
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040

Table IOB.3 Heuristic Processes Associated with EXPLORATION

Phase 1: Considering Essentially Equivalent Problems

a) Replacing conditions by equivalefit ones

b) Recombining the elements of the problem in different wafs

c) Introducing auxiliary elements

d) Re,formulating the problem, by

i) a change of perspective or notation

ii) considering argUment by contradictionorcontrapositive

iii) assuming a solution and determining the properties it
must have.

Phase 2: Considering Slightly Modified Problems

a). Choosing subgoals (obtaining partial fulfillment of the
goals in a directly liAeful way)

b) Relaxing a condition and then trying to reimpose it

c) Decomposing the domain of the problem and then working
on it case by case.

Phase 3: Considering Broadly Modified Problems

a) Constructing analogous problems with simplified structures,
in the hope of exploiting

Id the result of-the analogous problem

ii) the method used to solve the analogous problem

b) Holding all but one variable fixed, in the hope of better
understanding the role of that variable (or given)

c) Examining any related problem, in the hope that the

i) form,

ii) givens, or

iii) goals

will provide information useful to the solution of this.
problem.
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Table IOB.4 Heuristic Processes Associated with VERIFICATION

1. Checking to see that the solution passes these specific tests:

a) Does it use all the pertinent data?

b) Does it conform to reasonable estimates or predictions?

c) Does it withstand tests of symmetry, dimension analysis,
or scaling?

2. Checking to see that the solution passes these general tests:

a) Can the solution be obtained differently?

b) Can it be substantiated by special cases?

c) Can it be reduced to known results?,.

d) Can it be used to generate something wbich is known?

3. Checking to see if the whole process of solution can serve
as a learning experience. Is there a lesson to be learned,
and can one learn to be a better problem solver from this
experience?

4
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5. Conclusion

Perhaps ix is appropriate at this point to return to Polya's words:

the study of heuristic has practical aims; a better under-
standing of the mental operations typically useful in
solving problems could exert some good influence on
teaching, especially on the teaching of mathematics.
(Polya, 1957)

It can indeed. With proper attention to heuristic variables in instruc-
tion, the classroom can be more exciting and entertaining, and students
can learn to be better problem solvers. It is hoped that the discussion
of cued heuristics and stage heuristics in this chapter will assist in
achieving this goal.

4 7 j
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I am happy to see this work produced, for it brings together much

of the recent work on problem-solving task variables in mathematics.
Problem solving is a difficult area in which to do good research. I

commend the editors and contributors for the quality of their work and
for the effort expended in producing this volume. I trust there will

be additional volumes in future years as knowledge in this area
increases.

Clearly, this book is written for researchers. The objective is to

facilitate agreement on definitions of categories and tasks and to stan-
dardize vocabulary. This kind of thing should have been done years ago.
It will be a continuing effort for some time, I am sure, but unless

steps are taken toward standardization, no consensus will ever be

reached.

The opening chapter clearly indi,cates both the objectives and scope

of the work. Chapters I through V iAclude reviews of the research liter-
ature on task variables, emphasizing the various categories of task

variables and their definitions. In Chapters VI through VIII experi-
mental studies, in which the description or control of task variables

was theobjective,are summarized. In Chapters IX and X, teaching appli-
cations with specific examples of unit plans are included.

The broad categories of variables identified and described by Kulm

in the opening chapter may be grouped as follows: (1) structural varia-

bles in the sense of the linear regression studies; namely those having

to do with syntax, content, and cont_ext; (2) heuristic variables; and.

(3) problem representation variables. In Figure 1.1 a pictorial repre-
sentation of a hierarchy of task variables is presented.

The chapter by Barnett provides a good review of syntax variables.
It traces the development of the quantification of syntactic variables
quite accurately.

The summary of studies on content and context variables is also

well done. I agree with Webb that a better definition is required of
how problems are alike or different (problem "types"). Classifying
problems according to their solution strategies is one way of proceed-

ing. Perhaps teaching students the strategy required to solve a given
class or type of problems is the best procedure if such a single
strategy exists. However, it is often difficult if not impossible
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.% to prepare problems in such a way that there is only one way in' whieh to

solve them. The variety of ways in which problems can and have been

classified according to type is summarized in this chapter in consider-

able detail.

Chapter IV contains a fine review by Goldin of the literature ci

complexity variables, those variables which directly affect problem

difficulty. Thinking ahead a bit, I am not ure that the artificial

intelligence models discussed in this ehaliter have much to offer

teachers in the way of specific suggestions for instruction (nor were

they intended to do so). Reseatchers have founa, however, that in

trying to teach a computer to "learn," the essential ingredient is to

provide relevant background relationships. Perhaps that finding has

as much import for teachers as any that haS come from the research to

date.

The discussion of space-statesymmetry groups in Chapter IV con-

cerns me from the standpoint of being realistic enough to retain

relevance. I believe that we, myself included, sometimes tend to be

more detailed in our analyses of situations thanimay be warranted,
Being mathematically oriented, it is easy to want to see some underlying

structure, like a group, in what we are examining. I am not opposed to

this, but I am concerned that our focus remain on problem-solving
variables and instruction and that we do not, like Piaget, spend a

great deal of effort in attempting to identify mathematical groups or

other structures that do not exist- I am'not saying that I believe the

author of this chapter has fallen into such a trap; I am just express-

ing a concern that none of us ciq sp,

Goldin poses several hypotheses in Chapter IV to be tested empiri-

cally. To be worthwhile educationally, the examination or testing of

hypotheses such as those proposed should take place during initial

instruction, not at some later time. This concern is similar to that

which Brownell expressed in his review of studies on subtraction

earlier than his own. We can teach students'anything we choose. If

as teachers we were more systematic andl-thorough in our approach to

problem-solving instruction in the elementarr grades, such research

would be facilitated--students would then come to a problem-solving

situation having had similar experiences, which would facilitate the

study of transfer. The hypotheses are interesting and should be tested:\

The appropriate point fc- this is during initial learning, 'rather than

later when a variety of heuristics,may have been either rightly or

wrongly learned.

In Chapter V the literature on heuristic processes as task varia-

bles is reviewed quite thoroughly by McClintock. The work of artificial

intelligence researchers, and Wickelgben's, methods, -are also. reviewed. 1

Wickelgren's work is excellent in the sense that it presents a bier-

archy of general problem-solving methods or strategies'. I would like

to see someone attempt to integrate the methods described by Wicke4ren

with the work of Piaget. Which strategies ran,bis taught..to and effec-

tively used by children at the various developmental leve? Covington,

OR
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Crutchfield, and Davies (1974) demonstrate very clearly that fifth-grade

students can be taught to use the decision-tree strategy very effi-

ciently--the researchers were able to demonstrate significant transfer

effects of the skills learned to areas such as English and mathematics.

Students at earlier grades were not able to become as proficient with

the decision-tree strategy as were fifth graders (Crutchfield, 1966).

The need to teach specific strategies or heuristics has been-pointed

out by many regearchers. One such recommendation was made by Buswell

(1956). He found a great variety of thinkidg patterns among 'the 499

college and high school students in his study. In fact, one. of his

conclusions was that variety rather than similarity was a striking char-

acteristic of the problem-solvini strategies used by students in the

study (p. 136). Recommendations from thiq study includ9dwa call for
increased emphasis on teaching critical reading skills and the teaching
of specific strategies for problem solving (pp. 138-139). +0

.

The findings reported in Buswell's stUdy seem to be consistent with
the work recently reported by Bloom (1976). As students grow older,
there will Izie a greater variety, spread, or range of achievement unless

students are taught to a mastery level at each step along the bay.

The task then, it seems to me, is to develop a well-defined task

analysis for each problem-solvirc. strategy, to arrange strategies in a
hierarchical sequence, to teaching strategies for each step of

the task analysis, and thr act hypotheses such as those recommended

as iearn4g occurs rather e_ a later point.

W-Vickelgren's strategies ars sequenced according to the develop-
mentil stages Piaget has identified, the result might be as follows:

Number-conserving students whose ages range from 5 to-7 years:

1. Solve simple story problems

a. Use manipulative aids to demonstrate solutions

b. Draw pictures to showgsolutions

c. Verbally give solutions

2. Discriminate between problem types

a. ftate goals

b. ttate-context indicators of goals

c. State context indicators of operations

d. State context indicators uf givens
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1) Explicit givens

2) Impltait givens

e. Discriminate between relevant mathematical terms

3. Solve word problems

a. Solve one-step problems involving addition and

subtraction

b. Identify extra or unneeded information

Students whose ages range from 8 to 12 years can:

4. Do all of the above

5. Solve one-step problems using multiplication and division

6. Use the following problem-solving strategies:

a. Systematic trial and error

b. Classificatory trial and error

c. Decision trees

7. Solve two-step problems

8. Write mathematical sentences for each problem

9. Find alternate ways to solve many problems

Students whose ages range from 13 years up can:

10. Do all of the above

11. Use the following specific strategies:

a. Subgoals

b. State evaluation or hill climbing

c. Contradiction

12. Generalize or solve the general case for a given problem

The developmental sequence of strategies and steps proposed above

is certainly tentative, but it seems to be consistent with the current

literature. Much work remains to be done, to be sure. Perhaps jointly

we can determine the optimal sequence.
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Another aspect of development that may be important to problem

solving is the development of linguistic structures in human speech.
Linguistic complexity'may be a relative thing rather than an absolute.

The use of scales such.as the Schmidt-Kettel Scale of Linguistic Com-

plexity (Schmidt, 1977) or the Miscue Analysis by Goodman (1967) may

shed some additional light on,the nature of1/2inguistic depth and

complexity. The interrelationship between the development of cognitive
skills and language may provide important information.

Memory is also an important variable to be considered in problem
solving. Scandura (1977) provides an extensive review of the litera-
ture on memory and its relationship to the problem-solving process.
Perhaps more work might be expended profitably on determining the
extent of the memory load required by various types of problems, or
by the various typep of heuristics. Why are some heuristic processes
apparently easier to recall,and use than others? In what ways can
problem types or,heuristics be chunked to facilitate their accurate
recall and use in particular situations? In what ways can manipulative
materials be used to improve the teaching and learning of heuristics?

The coding systems suggested in Chapter V are quite detailed. Per-

haps if enough work is done with such systems, a clearer picture of

the problem-solving process will emerge. The effort in doing research
of this type will be well spent if it succeeds in providing clues to
cognitive processes.

The study reported by Goldin and Caldwell in Chapter VI is quite
interesting. The problem set seems well designed and representative
of the desired categories. The translation modeled.after Bobrow's
STUDENT is clear, and 3 very interesting method of determining syntactic
complexity is presented. The difficulties with the system of experimen-

'tal problems are fairly acknowledged. Overall the results of the study

are most interesting. I hope that this study will be replicated in the
near future. It would be interesting to see if the problem categories
are significant predictors in a regression analysis.

The study on concept acquisition by Waters (Chapter VII.A) is also
interesting. The task involved the use of attribute cards, and it was
found that slight variations in problem embodiment tended to induce
subjects to vary their solution strategies. I certainly agree with

this conclusion. The report by Goldin and Caldwell also contained a
similar statement. From all the research that I have read, it seems
clear that problem format as well as problem structure is a most power-
ful influence on the choice of solution strategy. It may be some time
before all the subtleties are clearly understood; however, the work
needs to be done.

The study by Days (Chapter VII.B) was intended to examin ... the

relationship between problem complexity and the cognitive level of
the subjects. Eighth graders were asked to think aloud while solving

problems. The protocols were scored, and task variables defined and
quantified. Again it was found that strategies varied as structure
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varied, with a wider variety of strategies or processes being used on

problems with more complex structures. The finding that "systematic

trial and error" was most frequently used on complex problems is most

interesting. This finding would seem to lend support to the findings

of studies in which linguistic variables were better predictors of

problem difficulty for older subjects than were computational varia-

bles. Complexity of sentence structure is probably not affected as

much in a trial-and-error situation as are mathematical variable

counts. The classification procedure used in the study seems to be

well thought out, and useful for further research.

Chapter VII.0 contains a review of studies on state-space analysis

and transfer. The chapter IS well done. I agree with Luger that trans-

fer must be specifically taught. If we expect transfer to take p,lace,

we must teach in a way that will bring it about. Similarities and

differences between problems must be pointed out. Students ought to

spend some time categorizing problems according to type in some selise,

in order to facilitate transfer. These points are further.developed by

Luger in Chapter X.A.

In Chapter VIII.A, Harik presents an analysis of the heuristic

process of trial and error. As was expected, the largest percentage

of ehe students used a trial-and-error str tegy to solve the problems.

One cannot help but wonder if the result co ld lave been anticipated

due to the age of the subjects and their p/evios traihing.

In Chapter VIII.B a process-sequen coding system is presented.

The process is quite detailed and com, ex. A.considerable,amount of

training will be required of anyon o wishe'Sto use the system

reliably.

The last chapters contain examples by Caldwe\l, Luger, and.Schoen-

feld, of teaching methods in which task variables play an important role.

Outlines of several sample instructional units are presented. The

objectives for the lessons are explicitly given and the sample lessons

are designed to teach to the objectives. In all they are well done,

and several are appropriate for improving learning transfer.

In summary, the book will be a valuable source of ideas and methods

for future research. Allowing for the few omissions mentioned above,

I believe that significant steps have been taken taward a better ,under-

standing of human problem solving, particularly in mathematics. I

believe the objectives for the work have largely been met. Neverthe-

less, we haVe just begun what may prove'to be a long journey. Perhaps

work such as that by Paul Torrance, on cultural influences on problem-

solving slumps at various age levels, and by Madeline Hunter, on

teaching skills., can be synthesized with the above-mentioned stndies

ta provide guidance on our journey.

In addition, some of the techniques used by earlier researchers,

sucil'as Buswell, may be helpful to us today in studying problem solving.

Buswell had students solve problems, and then arrange cards on which
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numerals and operation signs were written to stwitVthe order in

which they had been used. This approach, in addition to verbali-
zation, gave the researcher a very clear picture of the sequential

process used. It also provided students with more concrete referents

for their solution strategies. Perhaps a companion volume to this

current book could be one in which the experimental techniques used

by many researchers were reviewed and compared. Such a volume might

prove useful to all of us, since we tend to forget rather quickly

what has been done in previous years.
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REACTION PAPER 2

Task Variables in Mathematical Problem Solving

by

Jeremy Kilpatrick
University of Georgia
Athens, Georgia

While reading the pai*rs contained-iil this volume, I wrote down three

questions that seemed spécially pertinent to the topic of task variables

in'research on proble solving in mathematics:

1. To what does th word "problem" refer?

2. What do we mean when we talk about "problem structure"?

3. What is meant by "problem space"?

My answers to these questions agree with some statements in the volume and

conflict with others.

Regarding the first question, I am not so much concerned with a

definition of the term "problem" as with understanding what we.mean when

we say two problems are "the same" or "different." The distinction,

introduced in the first chapter and maintained throughout the volume,

between a statement of a problem and a representation of a problem is

useful in this connection. We think of the same prOblem as capable of

expression by means of various statements and as capable of representa-

tion inlafferent ways. "The problem" somehow exists in our thought in

a fashion separate from its expression and its representation. The

distinction, shown in the hierarchy of task variables in Figure 1.1,

between syntax, context, and content variables can be used to explore

the notion of problem identity. Syntax variables are those whose manip-

ulation l'resevves problem identity: it is the same problem whether
expressed in Ngl;ali or in French and whether expressed in the first

person, active Mice or the third person, passive voice. Context

variables are those whose manipulation preserves problem structure:
the missionary and cannibal problem discussed in Chapter IV and its

variant expressed in terms of "hobbits and orcs" are not the same
problem, but they are isomorphic; they differ only in their context.
Content variables are those whose manipulation preserves problem simi-

larity but not isomorphism: addition of the condition "only one
cannibal knows how to row" to the missionary and cannibal problem yields

a similar, but not identical or isomorphic, problem; changing the number

of rings in the Tower of Hanoi problem produces similar 'problems, and so

does changing the number of towers. One of the relatively unexplored
issues in task variable research, as noted in several chapters, is the

characterization of dimensions of similarity between problems. The

syntax, context, and content variable distinction seems to be a valuable

first step in beginning this exploration.
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It may be useful to think of a problem as a kind of equivalence

class of problem statements in which syntax and context are allowed to

yary, but content is not. Under this interpretation, the answer to the

second question above is that "problem structure" refers to the common

property of problem statements in the same equivalence class. Problems

that are in different equivalence classes have different structures.

Similarity of problems is really similarity of structure. As noted in

several chapters, we teachers of mathematics need to help our students

learn to distinguish similarity of problem statements from similarity

of problem structures.

Now we.come to the third o.uestion, which deals with representation.

According to Newell and Simon (1972), the "problem space" ts the space

in which a person's problem-solving activities take place. Consequently,

it should be understood as dependent upon the particular representation

of the problem that the solver has constructed. In order to understand

how people solve problems, researchers need to study the problem spaces

they construct and the activities they perform in these spaces. State-

space analysis, as portrayed in Chapter IV, seems to offer a way of

approaching the question of problem spaces, at least for certain kinds

of problems. Goldin makes the important point that the same problem can

have different tate-spaces, depending on its representation. This

observation sug ests that, just as it is helpful to distinguish problem

statement from Rroblem representation and state-space from problem space,

so it might be *elpful to distinguish the structure oc a problem from
the structure of/ its representation. The structure ot a problem is, as

Newell and SimonIsuggest in discussing explicit representation of the
task environment;\ not open to veridical description. The structure of

various "official or "canonical" representations of a problem is dealt

with by state-space analysis, among other techniques. The structure of

a person's idiosyncratic representation of a problem is dealt with by
analyzing the individual's problem space, which includes more than a

state-space. Problem spaces encompass not only the person's knowledge

of the problem but also errors made when the problem's conditions ire

violated. One of the dangers of a heavy reliance on tate-space analy-

ses of puzzle problems to investigate problem solving in mathematics is

that puzzle problems are distinctive precisely because their conditions

are easily understood and used. In much problem solving in mathe-
matics, understanding the conditions is a major source of difficulty

a'ad violations of the conditions are common.

From the point cf view of the problem as a task environment, content

variables deternine the structure of the problem. Change them and you

have changed the problem's structure. Consequently, I would argue that

the "key words" discussed in Chapter III should not be considered to

refer to content, but to syntax. In my view, for example, Problems

3.25 and 3.26 are the same problem stated differently:

3.25 The milkman brought on Sunday 4 bottles of milk more

than on Monday. On Monday he brought 7 bottl,eq. How

many bottles did he bring on Sunday?
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3.26 The milkman brought on Monday 7 bottles of milk. That

was 4 bottles less than he brought on Sunday. How

many bottles did he bring on Sunday?

The problem is obviously capable of different representations, but the

two statements refer to the same problem because they have Ite same

data, the same unknown, and the same relation between data and unknown.

On the other hand, Problems 3.38 and 3.39 differ not only in context

but also in content:

3.38 Find the smallest set of whole numbers such Mat every

integer from 1 to 7 is either an element of the set or

a sum of the elements in a subset.

3.39 A woman has a chain with seven gold links. She would

like to take a seven-day trip by carriage. The driver

has agreed to take her for one link of the goZden chain

for each day, payable at the end of the day. If it

costs the woman five dollars to have a jeweler open one

Zink, what is the least amount of money she would have

to spend to open links so the driver can have one link

the first day, two links the second day, and so on?

Problem 3.38 does not require determination of the number of cuts

necessary to yield subsets of the appropriate numbers of elements,

nor does it require calculation of the cost of the cuts.

The argument is made in this volume that content and structure

variables are to be distinguished on the basis that structure

variables require a mathematical analysis of the problem and content

variables do not. I find this argument unconvincing. The situation

becomes especially cloudy when one considers what is meant by problem

"type." Webb asserts in Chapter III that problem type is a content

variable if it can be identified from the problem statement "without
mathematical processing;" otherwise, it is a structure variable. How

can one decide when mathematical processing begins in problem solving?

The remarks above suggest that problem type is best thought of as a

context variable. "Related rates" problems share common features of

embodiment; they need not be stated in the same syntax, and they need

not have the same structure--although problem types are usually iden-

tified in the expectation that problems of the same type will be

similar in structure and representation.

In line with the position I have expressed above, content and

structure variables can be distinguished as follows: "content

variables" refer to the structure of the problm, and "structure

variables" refer to the structure of a representation of the problem.

Goldin makes the nice observations that the valid representations

of a problem fall into isomorphism classes and also that distinct prob-

lems may have isomorphic representations. The latter observation, by
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the way, supports the contention that problems are better characterized

in terms of their statements than in terms of their representations.

I part company with Goldin, howevet, when he asserts that "by any

reasonable definitions" Problems 4.4a, 4.4b, and 4.4c do not differ in

syntax, context, or content. (Problem 4.4a involves two nickels and

two dimes in a row with a space between, the object being to exchange

the positions by a series of legal moves; Problem 4.4b involves three
nickels and three dimes, with the same rules and the same object; and

Problem 4.4c involves four nickels and four dimes,vwith the same rules

and the same object.) By what I consider a reasonable meaning of
"content varAable," the three problems do differ in content. The state-

ments of the problems are clearly different, and the use of different

number words has a nontrivial effect. Most people would agree, I think,
that the three problems are different. Of course, the problems also
have non-isomorphic representations, and consequently so-called
"structure" variables are needed to characterize this difference.

I suggest that the hierarchy of task variables ought to be amended

so that Newell and Simon's distinction between the structure of the task
environment and the structure of the problem space is maintained; that

is, so that both "content" and "structure" variables are viewed as

describing structure. I also suggest that both algorithmic and heuris-
tic processes be viewed as operating within the person's problem space

and that strategies be viewed as combinations of such processes. And

finally, I suggest that one not.attempt to link Polya's four phases of
problem solving to the categories of task variables. I find the pro-
posed linkage arbitrary, strained, and--to coin a term--unheuristic.

The volume as a whole is eloquent testimony to.the value of an

explicit treatment of task variables in research on problem solving.
Many of the research studies cited have been reviewed elsewhere, but

different facets emerge when the studies are considered in terms of
the task variables involved. The hierarchy of task variables and the
accompanying types of task analysis that are presented tn Chapter I,
despite the areas of disagreement described above, represent real
progress in the conceptualization of problem-solving research.

Barnett's discussion of syntax variables in Chapter II is an
impressive contribution, and the information-processing model he uses
to organize the discussion is especially helpful. Consideration of
the information-processing activities of a problem solver in reading

the statement of a problem leads one to consider the role of irrelevant

information in the statement. According to the analysis provided above,
the presence or absence of irrelevant information ought to be con-
sidered a syntax variable, since such information by definition does
not change the problem. But of course it may have a profwind effect

on the salver's representation of the problem. Robinson and Hayes
(1978) have shown how one can study the processes by which problem
solvers judge the relevance of information in the problem statement."----'

In their technique students read a problem twice, a section at a time,

each time judging whether or not the information in the section is
relevant to the solution. Differences in reaction time depending on
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whether the problem's question is at the beginning or end of the state-

ment are used to test a model of attention to various types of informa-

tion.

Reaction time data,-although popular in psychological research,

have rarely been used in research on problem solving in mathematics.

Such data seem especially promisinn for testing models of problem-

solving processes. For example, Malin (1979) demonstrated that the
efficiency of strategies such as working bockward depends on both the
structure of the problem and the information-processing demands made

on the problem solver by the strategy. Perhaps the heavy dependence

on correctness of solution as a dependent variable, and the correspond-
ing avoidance of reaction time data, accountscfor some of the failure
of researchers in mathematics education to observe much effect when
syntax, context, and content variables are manipulated.

Most of the attempts to study the effects of variations in syntax
by means of regression analysis have used correctness of the solution

as the dependent variable. The emphasis has been on problem difficulty.
Barnett recommends attention to process variables such as the form of

the equations used in a solution. Since there are so many ways for
final solutions to go wrong that do not depend on problem syntax, inter-

mediate product variables, such as the correctness of the operations
pelected or ehe equations written, might also be taken as dependent

.,ariables. For example, an early and little known regression analysis
study (Kilpatrick, 1960) attempted to predict both correct equations
and correct solutions from syntax variables.

Barlett cites some weaknesses of the linear regression model, but
he does not sufficiently stress the most serious faults of the research

studies he cites that have used the model: the lack of a theory to
guide fhe selection of variables, the crude measures used for many of
the variables, and the high ratio of variables to problems (which all
but guarantees good prediction).

Webb presents a discussion of content and context variables in.
Chapter III that, despite his use of terms in a different sense than
I would, nicely sets out some important dimensions of task difference.
"Mathematical topic" and "field of application" are useful categories
for classifying problems, although neither category fits the charac-
terizations I have given of content apd context variables. These

categories seem to refer not to variables that can be manipulated to
'yield different problems, but to classes of problems characterized by
various values of content and context variables, as well as by the
mathematics used to solve the problems and the uses to which the
problems are put. I would take small exception to the generalization
Webb makes at the end of the chapter, to the effect that most context
variables do not greatly affect problem difficulty, by noting that
problems in logical reasoning, and syllogistic reasoning problems in
particular, seem to be highly susceptible to context variation. Mayer
(1978) has shown,how manipulating the meaningfulness of a problem's
context can have profound effects on inference processes.



My earlier remarks have suggested some of my admiration for Goldin's

analysis, in Chapter IV, of problem structure and complexity. Despite

our disagreement on some details, his explication of state-space homer-
phisms and isomorphisms provides a solid and original framework for .

viewing the structure of problem representations.' I am less happy with

his implication that nonroutine problems are especially open to state-

space analysis--what makes them good candidates is not that they are
nonroutine, but that they are essentially puzzle problems in which the

number of choices of moves is restricted. These, however, are minor

quibbles in view of the outstanding contribution the chapter makes.

McClintock argues at the beginning of Chapter V that heuristic pro-
cesses are inherent in certain problems. His use of the subproblem
decomposition of the Tower of Hanoi problem to illustrate this point
highlights an impor,iant distinction. Solution of the four-disc problem
entails solution of the three-disc problem, but the solver of the four-

disc problem need not have used the heuristic process of subproblem

decomposition. Thus the distinction between solving a problem in which
a heuristic process would be helpful, and actually using the heuristic

process to solve the problem, is important. In the case of a computer

programmed to solve the problem, one would want to know whether the

machine was identifying and solving subproblems as part of the solution.

In the case of a human solver, one would like some evidence that the

solver.is aware of the heuristic process--whether or not he or she was
aware of applying it in solving the problem. Use of heuristic processes

seems to require some degree of consciousness in their use, but the
implied possibility of subconscious or accidental use suggests that

further exploration of this issue would be worthwhile. In this connec-

tion, McClintock's characterization (in his discussion of Krutetskii) of

heuristic processes as volitionally controllable or initiatable, as
opposed to the more involuntary and synthetic mathematical abilities,

is provocative. I have trouble seeing abilities as processes or as
combinations of processes, but I am challenged by McClintock's formula-

tion.

In the first part of Chapter VIII, Harik gives a slightly different

twist to the notion of inherency of heuristic reasoning processes, defin-

ing it with respect to both the problem itself and a population of

solvers. Whether or not "inherent" is the best word to use to refer
to a process used by most people in solving a particular problem, it
does seem useful to characterize problems in terms of both the poten-
tial utility of various heuristic processes in yielding a solution and

the actual use of these processes by a given set of probiem solvers.
Harik's work provides an interesting example of the use of the state-
space concept to analyze algebraic tasks, but one should note that the

analysis assumes that the problem solvers have incorporated the unstated

assumption in the problems she uses that the solution values will be

positive integers. Harik does not give sufficient attention to-the
knowledge that the solver brings to the task and that is used both in
constructing the problem space and in deciding how to move through it.

For example, she characterizes guesses as totally or partially random,
ignoring the fact that even the wildest guesses are constrained by
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various problem conditions and, in the case of numerical answers, are

almost always round numbers to simplify calculations. Harik's discus-

sion of problem.reduction is interesting, but one should distinguish

between her use of the term and Polya's advice to reduce the problem

to a simpler one. Again, a process is not a heuristic process unless

it is undertaken deliberately and with some degree of conscious inten-

tion. Reduction to a simpler problem is a way of transforming a

problem so that the solution of the simpler version may be of use in

the solution of the original problem. .Someone who solves part of a

problem so that only a simpler subproblem remains should not be auto-

matically credited with reduction to a simpler problem. Otherwise,

everyone who solves a complex problem is using the heuristic processes

of reduction to a simpler problem and subproblem decomposition. Harik's

use of graphical means to portray.patterns of guessing is a valuable

device that is likely to prove fruitful in subsequent research studies.

The Goldin and Caldwell study reported in Chapter VI is notable

for the careful attempt to control syntax, context, ancl-content varia-

bles. The difficulty of controlling one variable at--; time is

illustrated by the contrast between "factual" and "hypothetical" versions

of the same problem: in attempting to manipulate context, the investi-

gators found that they had to manipulate syntax as well. As an aside,

I was struck by how closely the behavior of the STUDENT computer program

used in the study resembles the advice to problem solvers given by -

Dahmus (1970). In effeit, Dahmus attempts to program students to solve

routine word problems, so perhaps one should not be surprised that this

computer program incorporates some of his advice.

Two of the studies, those reported by Waters and Luger reported 4.n

Chapter VII, refer to the "deep end" hypothesis of Dienes and Jeeves

(1965, 1970). As Goldin observes in Chapter IV, one needs to consider

the performance on both tasks in testing this hypothesis, and the real

question is whether task order affects total performance. It is wrong

to argue from differences in significance levels, but the authors do

not make this clear. The "deep end" notion has some subtle aspects; it

should not be interpreted indiscriminately.

Waters' use of structured questions to get at problem solvers'

intentions is an interesting approach. Other researchers have obtained

retrospective evaluations and have tried to match them to strategies as

defined by sequences of moves, but few researchers have been bold enough

to interrupt the solver to ask why a given move had been made. In

setting up his tasks, Waters attempted to manipulate context while

holding content constant. Although the tasks were isomorphic, their
state-space representations, as Waters notes, were not. In other words

(using my terminology), the structure of the problem was the same, but

the structure of the problem's representation was not the same.

The study by Days in Chapter VII shows that his distinction between

simple and complex problems apparently has some implications, but since

there are so many dimmsions of distinction, one cannot know which ones

are most important. Some obvious follow-up work is called for. Days'
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distinction between explicit and implicit reference to problem elements

in the statement of the problem seems to have some promise for predict-

ing problem difficulty, although in another study (Kilpatrick, 1960) a

measure of implicitness predicted correctness of equations, but not

correctness of solutions.

The process-sequence coding system presented by the research team

in the second part of Chapter VIII is a tool that, although somewhat

cumbersome to apply, can be used to illuminate some features of problem

solving. The discussion of the communication between problem solver

and coder shows some of the points where "noise" can enter the system,

but insufficient attention has been given to difficulties at both-ends

of the communication channel. At the problem solver's end, the authors

appear to assume that the solver is aware of all of his or her thoughts,

or more precisely, that the thoughts exist in a form that can be

grasped, if not necessarily reported accurately, by the solver. The

phrases "genuine process behavior" and "what actually happened during
problem solving" suggest that the authors view thinking as an object

open to discovery rather than as a construct approached Chrough various

fallible methods. At the coder's end of the communication channel, the

discussion overlooks the arbitrary nature of the code. Coding systems

'are devised to serve particular purposes, and no system can do everything.

Any system highlights some features at the expense of others. The system

presented in Chapter VIII can be used with a large set of problems to

provide information on a large set of "processes," but one needs to ask

whether sufficient attention h4, been given to Che context and content

dimensions along which problem?lcan vary. One should also ask whether

the calculation of intercoder agreement for the system has not made too

many compromises; if protocols are to be coded symbol-to-symbol, then

an estimate of symbol-by-symbol agreement between coders is essential.

The important point, however, is that rather than pushing toward a

comprehensive coding system, researchers need to step back and ask what

purpose is to be served by a system and theh design it accordingly.

Caldwell's advice to teachers in Chapter IX regarding the use of

syntax, content, and context variables demonstrates clearly the value

of explicating task variables. Although she and I appear to differ in

what we mean by content and structure variables, the examples she pro-

vides are excellent. One could have a profitable discussion in a
mathematics class (or among a group of researchers) by asking which of

the 13 versions of the routine word problem that she presents at the

beginning of the chapter really refer to "the same" problem. I liked

the unit plans for teaching about task variables. The first plan prpb-

ably attempts to do too many different things, but I thought the ideas

for showing students how syntax and,contextatight vary were quite good.

In discussing context variation, I think it would be especially helpful

for students to see that the same numbers in the same relationship can

be provided with different "cover stories," and I would place more

emphasis on the students actually working up the cover stories themselves.

In the first part of Chapter X, Luger makes some important points

about problem structure variables in teaching. In particular, I thought

4 R



-471-

his discussion of the semantic content that machines (and therefore

students) need in order to "understand" a problem ought to be pondered

by every teacher. Many of the suggestions he gives for teaching, such

as the representation of "uniform aging," are first-rate. I do feel

that the topic of "problem type" needs to be handled with care by

teachers. Experience in both the United States and the Soviet Union

shows how unproductive a heavy emphasis on identifying problem types

can be. I think teachers who want students to classify problems by

type should give some examples, perhaps borrowed from Krutetskii (1976),

of problems that superficially appear to be of tfie same type but are not.

In the second part of Chapter X, Schoenfeld also discusses problem

types, but within the context of getting students to see when certain

heuristic processes might aid problem solving. Schoenfeld is probably

right in terming problem categorization an "underplayed" process, but

again one needs to avoid too rigid a stance. The whole question of how

problems are to be sequenced during instruction in heuristic processes
needs further thought and research. One needs to orchestrate instruc-
tion so there is a good balance between intensive experience with a

given heuristic process and problems -f a given "type" and extensive

experience in which identification of :he appropriate process is the

chief goal. Schoenfeld has provided some thoughts relating to this
issue, but much more needs to be done. I am not convinced that his

partition of heuristic processes into "cued" and "stage" processes is

worth pushing too far.

One reason problem solving is such a popular topic among teachers

and researchers is that people can read many alternative meanings into

the term "problem." When problems range all the way from sterile text-

book exercises to real-life situations waiting to be given a mathematical
formulation, the topic obviously provides something for everyone--and the

opportunity for considerable confusion when people discuss the topic.

The present volume has attempted to organize some of this confusion and,

consequently, has taken a step toward a theory of problem solving. As

Shulman and Elstein (1975) astutely note, "a theory of problem solving

must be, first, a description of how different kinds of problems are
solved and, second, a taxonomic or logical analysis of the interrelations

among problem types" (p. 14). Both of these components have been
addressed thoughtfully and fruitfully in this volume.
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